Unknown

Dataset Information

0

Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome.


ABSTRACT: Enhanced metabotropic glutamate receptor subunit 5 (mGluR5) function is causally associated with the pathophysiology of fragile X syndrome, a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the fragile X syndrome mouse model, Fmr1 knockout (Fmr1(-/y)). In Fmr1(-/y) mice, mGluR5 was less associated with long Homer isoforms but more associated with the short Homer1a. Genetic deletion of Homer1a restored mGluR5-long Homer scaffolds and corrected several phenotypes in Fmr1(-/y) mice, including altered mGluR5 signaling, neocortical circuit dysfunction and behavior. Acute, peptide-mediated disruption of mGluR5-Homer scaffolds in wild-type mice mimicked many Fmr1(-/y) phenotypes. In contrast, Homer1a deletion did not rescue altered mGluR-dependent long-term synaptic depression or translational control of target mRNAs of fragile X mental retardation protein, the gene product of Fmr1. Our findings reveal new functions for mGluR5-Homer interactions in the brain and delineate distinct mechanisms of mGluR5 dysfunction in a mouse model of cognitive dysfunction and autism.

SUBMITTER: Ronesi JA 

PROVIDER: S-EPMC3288402 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome.

Ronesi Jennifer A JA   Collins Katie A KA   Hays Seth A SA   Tsai Nien-Pei NP   Guo Weirui W   Birnbaum Shari G SG   Hu Jia-Hua JH   Worley Paul F PF   Gibson Jay R JR   Huber Kimberly M KM  

Nature neuroscience 20120122 3


Enhanced metabotropic glutamate receptor subunit 5 (mGluR5) function is causally associated with the pathophysiology of fragile X syndrome, a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the fragile X syndrome mouse model, Fmr1 knockout (Fmr1(-/y)). In Fmr1(-/y) mice, mGluR5 was less associated with long Homer isoforms but more associated with the short Homer1a. Genet  ...[more]

Similar Datasets

| S-EPMC4685008 | biostudies-literature
| S-EPMC4866051 | biostudies-literature
| S-EPMC4879559 | biostudies-literature
| S-EPMC9504063 | biostudies-literature
| S-EPMC3400430 | biostudies-literature
| S-EPMC5181626 | biostudies-literature
| S-EPMC6811549 | biostudies-literature
| S-EPMC3531466 | biostudies-literature
| S-EPMC3633372 | biostudies-literature
| S-EPMC5681991 | biostudies-literature