The IKK?-dependent NF-?B p52/RelB noncanonical pathway is essential to sustain a CXCL12 autocrine loop in cells migrating in response to HMGB1.
Ontology highlight
ABSTRACT: HMGB1 is a chromatin architectural protein that is released by dead or damaged cells at sites of tissue injury. Extracellular HMGB1 functions as a proinflammatory cytokine and chemoattractant for immune effector and progenitor cells. Previously, we have shown that the inhibitor of NF-?B kinase (IKK)?- and IKK?-dependent NF-?B signaling pathways are simultaneously required for cell migration to HMGB1. The IKK?-dependent canonical pathway is needed to maintain expression of receptor for advanced glycation end products, the ubiquitously expressed receptor for HMGB1, but the target of the IKK? non-canonical pathway was not known. In this study, we show that the IKK?-dependent p52/RelB noncanonical pathway is critical to sustain CXCL12/SDF1 production in order for cells to migrate toward HMGB1. Using both mouse bone marrow-derived macrophages and mouse embryo fibroblasts (MEFs), it was observed that neutralization of CXCL12 by a CXCL12 mAb completely eliminated chemotaxis to HMGB1. In addition, the HMGB1 migration defect of IKK? KO and p52 KO cells could be rescued by adding recombinant CXCL12 to cells. Moreover, p52 KO MEFs stably transduced with a GFP retroviral vector that enforces physiologic expression of CXCL12 also showed near normal migration toward HMGB1. Finally, both AMD3100, a specific antagonist of CXCL12's G protein-coupled receptor CXCR4, and an anti-CXCR4 Ab blocked HMGB1 chemotactic responses. These results indicate that HMGB1-CXCL12 interplay drives cell migration toward HMGB1 by engaging receptors of both chemoattractants. This novel requirement for a second receptor-ligand pair enhances our understanding of the molecular mechanisms regulating HMGB1-dependent cell recruitment to sites of tissue injury.
SUBMITTER: Kew RR
PROVIDER: S-EPMC3288724 | biostudies-literature | 2012 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA