Using targeted active-learning exercises and diagnostic question clusters to improve students' understanding of carbon cycling in ecosystems.
Ontology highlight
ABSTRACT: In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and organic carbon-containing compounds in biological systems. These results helped us identify specific active-learning exercises that would be responsive to students' existing knowledge. The effects of the active-learning interventions were then examined through analysis of students' pre- and postinstruction responses on the DQCs. The biology and non-biology majors participating in this study attended a range of institutions and the instructors varied in their use of active learning; one lecture-only comparison class was included. Changes in pre- to postinstruction scores on the DQCs showed that an instructor's teaching method had a highly significant effect on student reasoning following course instruction, especially for questions pertaining to cellular-level, carbon-transforming processes. We conclude that using targeted in-class activities had a beneficial effect on student learning regardless of major or class size, and argue that using diagnostic questions to identify effective learning activities is a valuable strategy for promoting learning, as gains from lecture-only classes were minimal.
SUBMITTER: Maskiewicz AC
PROVIDER: S-EPMC3292066 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA