Unknown

Dataset Information

0

Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex.


ABSTRACT: Olfactory receptors (Ors) convert chemical signals--the binding of odors and pheromones--to electrical signals through the depolarization of olfactory sensory neurons. Vertebrates Ors are G-protein-coupled receptors, stimulated by odors to produce intracellular second messengers that gate ion channels. Insect Ors are a heteromultimeric complex of unknown stoichiometry of two seven transmembrane domain proteins with no sequence similarity to and the opposite membrane topology of G-protein-coupled receptors. The functional insect Or comprises an odor- or pheromone-specific Or subunit and the Orco co-receptor, which is highly conserved in all insect species. The insect Or-Orco complex has been proposed to function as a novel type of ligand-gated nonselective cation channel possibly modulated by G-proteins. However, the Or-Orco proteins lack homology to any known family of ion channel and lack known functional domains. Therefore, the mechanisms by which odors activate the Or-Orco complex and how ions permeate this complex remain unknown. To begin to address the relationship between Or-Orco structure and function, we performed site-directed mutagenesis of all 83 conserved Glu, Asp, or Tyr residues in the silkmoth BmOr-1-Orco pheromone receptor complex and measured functional properties of mutant channels expressed in Xenopus oocytes. 13 of 83 mutations in BmOr-1 and BmOrco altered the reversal potential and rectification index of the BmOr-1-Orco complex. Three of the 13 amino acids (D299 and E356 in BmOr-1 and Y464 in BmOrco) altered both current-voltage relationships and K(+) selectivity. We introduced the homologous Orco Y464 residue into Drosophila Orco in vivo, and observed variable effects on spontaneous and evoked action potentials in olfactory neurons that depended on the particular Or-Orco complex examined. Our results provide evidence that a subset of conserved Glu, Asp and Tyr residues in both subunits are essential for channel activity of the heteromeric insect Or-Orco complex.

SUBMITTER: Nakagawa T 

PROVIDER: S-EPMC3293798 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex.

Nakagawa Tatsuro T   Pellegrino Maurizio M   Sato Koji K   Vosshall Leslie B LB   Touhara Kazushige K  

PloS one 20120305 3


Olfactory receptors (Ors) convert chemical signals--the binding of odors and pheromones--to electrical signals through the depolarization of olfactory sensory neurons. Vertebrates Ors are G-protein-coupled receptors, stimulated by odors to produce intracellular second messengers that gate ion channels. Insect Ors are a heteromultimeric complex of unknown stoichiometry of two seven transmembrane domain proteins with no sequence similarity to and the opposite membrane topology of G-protein-coupled  ...[more]

Similar Datasets

| S-EPMC112759 | biostudies-literature
| S-EPMC5145856 | biostudies-literature
| S-EPMC7474693 | biostudies-literature
| S-EPMC3233689 | biostudies-literature
| S-EPMC1262777 | biostudies-literature
| S-EPMC3195787 | biostudies-literature
| S-EPMC3605439 | biostudies-literature
| S-EPMC3427790 | biostudies-literature
| S-EPMC6742261 | biostudies-literature
| S-EPMC2530893 | biostudies-literature