Project description:BackgroundBartonella alsatica has been formerly isolated from the blood of wild European rabbit (Oryctolagus cuniculus) and identified as causative agent of human endocarditis and lymphadenitis. Fleas are known biological vectors for Bartonella sp. This report details the specific detection of B. alsatica in three flea species commonly associated with the European wild rabbit in Southern Iberian Peninsula (Odontopsyllus quirosi, Spylopsyllus cuniculi and Xenopsylla cunicularis).MethodsIn the present study we have tested the presence of Bartonella alsatica in 26 European wild rabbit specimens and the fleas that they carrying at the moment of capture. Together to rabbits, captured from different localities of Andalusia (Jaen, Granada and Cordoba provinces), we evaluated three of fleas species that parasitize it usually using molecular techniques [PCR amplification and sequencing of intergenic transcribed spacer (ITS) 16S-23S rRNA].ResultsOver a sample of 26 wild rabbits carrying fleas, positive PCR amplicons for B. alsatica were obtained from 10 rabbits. All positive flea pools for B. alsatica were collected from positive rabbits [33.33% (8/24 pools) of S. cuniculi, 33.33% (5/15 pools) of X. cunicularis and 0% (0/7 pools) of O. quirosi]. In three positive rabbits, a pool of S. cuniculi and two pools of X. cunicularis respectively were negative. After sequencing, only B. alsatica (Genbank accession AF312506) was found in the rabbits sampled as well as in S. cuniculi and X. cunicularis within the respective fleas.ConclusionsThis research confirms the implication of two pulicidae flea species, S. cuniculi and X. cunicularis in the maintenance of infection by B. alsatica in wild rabbit populations throughout the year. The zoonotic character of this bartonellosis emphasizes the need to alert public health authorities and the veterinary community for the risk of infection.
Project description:We detected 3 Bartonella species in wild rabbit fleas from Colorado, USA: B. vinsonii subsp. berkhoffii (n = 16), B. alsatica (n = 5), and B. rochalimae (n = 1). Our results support the establishment of the zoonotic agent B. alsatica in North America.
Project description:The prevalences of Bartonella, Rickettsia, and Wolbachia were investigated in 309 cat fleas from France by polymerase chain reaction (PCR) assay and sequencing with primers derived from the gltA gene for Rickettsia, the its and pap31 genes for Bartonella, and the 16S rRNA gene for Anaplasmataceae. Positive PCR results were confirmed by using the Lightcycler and specific primers for the rOmpB of Rickettsia and gltA of Bartonella. R. felis was detected in 25 fleas (8.1%), W. pipientis, an insect symbiont, in 55 (17.8%), and Bartonella in 81 (26.2%), including B. henselae (9/81; 11.1%), B. clarridgeiae (55/81; 67.9%), B. quintana (14/81; 17.3%), and B. koehlerae (3/81; 3.7%). This is the first report of the amplification of B. quintana from fleas and the first description of B. koehlerae in fleas from an area outside the United States. Cat fleas may be more important vectors of human diseases than previously reported.
Project description:The presence of Bartonella species in Xenopsylla cheopis fleas collected from Rattus spp. (R. exulans, R. norvegicus, and R. rattus) in Khon Kaen Province, Thailand was investigated. One hundred ninety-three fleas obtained from 62 rats, were screened by polymerase chain reaction using primers specific for the 16S-23S intergenic spacer region, and the presence of Bartonella DNA was confirmed by using the citrate synthase gene. Bartonella DNA was detected in 59.1% (114 of 193) of fleas examined. Sequencing demonstrated the presence of Bartonella spp. similar to B. elizabethae, B. rattimassiliensis, B. rochalimae, and B. tribocorum in the samples tested with a cutoff for sequence similarity ≥ 96% and 4 clustered together with the closest match with B. grahamii (95.5% identity). If X. cheopis proves to be a competent vector of these species, our results suggest that humans and animals residing in this area may be at risk for infection by several zoonotic Bartonella species.
Project description:BackgroundBartonellosis is an emerging vector-borne disease caused by different intracellular bacteria of the genus Bartonella (Rhizobiales: Bartonellaceae) that is transmitted primarily by blood-sucking arthropods such as sandflies, ticks and fleas. In Tunisia, there are no data available identifying the vectors of Bartonella spp. In our research, we used molecular methods to detect and characterize Bartonella species circulating in fleas collected from domestic animals in several of the country's bioclimatic areas.ResultsA total of 2178 fleas were collected from 5 cats, 27 dogs, 34 sheep, and 41 goats at 22 sites located in Tunisia's five bioclimatic zones. The fleas were identified as: 1803 Ctenocephalides felis (83%) (Siphonaptera: Pulicidae), 266 C. canis (12%) and 109 Pulex irritans (5%) (Siphonaptera: Pulicidae). Using conventional PCR, we screened the fleas for the presence of Bartonella spp., targeting the citrate synthase gene (gltA). Bartonella DNA was detected in 14% (121/866) of the tested flea pools [estimated infection rate (EIR) per 2 specimens: 0.072, 95% confidence interval (CI): 0.060-0.086]. The Bartonella infection rate per pool was broken down as follows: 55% (65/118; EIR per 2 specimens: 0.329, 95% CI: 0.262-0.402) in C. canis; 23.5% (8/34; EIR per 2 specimens: 0.125, 95% CI: 0.055-0.233) in P. irritans and 6.7% (48/714; EIR per 2 specimens: 0.032, 95% CI: 0.025-0.045) in C. felis. Infection rates, which varied significantly by bioclimatic zone (P < 0.0001), were highest in the humid areas. By sequencing, targeting the gltA gene and the 16S-23S rRNA Intergenic Spacer Regions (ITS), we identified three Bartonella zoonotic species: B. elizabethae, B. henselae, B. clarridgeiae, as well as uncharacterized Bartonella genotypes.ConclusionsTo the best of our knowledge, this is the first time that fleas in Tunisia have been shown to carry zoonotic species of Bartonella. The dog flea, Ctenocephalides canis, should be considered the main potential vector of Bartonella. Our study not only provides new information about this vector, but also offers a public health update: medical practitioners and farmers in Tunisia should be apprised of the presence of Bartonella in fleas and implement preventive measures.
Project description:Fleas are important vectors of several Rickettsia and Bartonella spp. that cause emerging zoonotic diseases worldwide. In this study, 303 fleas collected from domestic dogs and cats in Ethiopia and identified morphologically as Ctenocephalides felis felis, C. canis, Pulex irritans, and Echidnophaga gallinacea were tested for Rickettsia and Bartonella DNA by using molecular methods. Rickettsia felis was detected in 21% of fleas, primarily C. felis, with a similar prevalence in fleas from dogs and cats. A larger proportion of flea-infested dogs (69%) than cats (37%) harbored at least one C. felis infected with R. felis. Rickettsia typhi was not detected. Bartonella henselae DNA was detected in 6% (2 of 34) of C. felis collected from cats. Our study highlights the likelihood of human exposure to R. felis, an emerging agent of spotted fever, and B. henselae, the agent of cat-scratch disease, in urban areas in Ethiopia.
Project description:Bartonella alsatica is a wild rabbit pathogen causing bacteremia rarely reported in humans, with only three cases published so far, including one lymphadenitis and two endocarditis cases. Here, we report the case of a 66-year-old man who suffered from acute renal failure due to a membranoproliferative glomerulonephritis. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) showed diffuse FDG uptake around the aortobifemoral graft with no indication of infection. A white blood cell scan showed an accumulation of labeled neutrophils on the left femoral part of the graft. The patient underwent surgery and an abscess around the left iliac part of the graft was found intraoperatively. Intraoperative samples were all negative, but 16S rRNA gene-based PCR was positive, and the sequence was positioned among the Bartonella species cluster. Specific PCRs targeting groEL/hsp60, rpoB and gltA genes were performed and led to the identification of B. alsatica. Accordingly, indirect immunofluorescence serological analyses were positive for Bartonella henselae and Bartonella quintana. The patient had a history of regularly hunting wild rabbits. He was treated with 100 mg of doxycycline twice a day for six months and his renal function significantly improved with no sign of persistent infection. This case highlights the contribution of serology assays and molecular-based methods in prosthetic vascular graft infection diagnosis.