Project description:The pathogen transmission dynamics in bat reservoirs underpin efforts to reduce risks to human health and enhance bat conservation, but are notoriously challenging to resolve. For vampire bat rabies, the geographical scale of enzootic cycles, whether environmental factors modulate baseline risk, and how within-host processes affect population-level dynamics remain unresolved. We studied patterns of rabies exposure using an 11-year, spatially replicated sero-survey of 3709 Peruvian vampire bats and co-occurring outbreaks in livestock. Seroprevalence was correlated among nearby sites but fluctuated asynchronously at larger distances. A generalized additive mixed model confirmed spatially compartmentalized transmission cycles, but no effects of bat demography or environmental context on seroprevalence. Among 427 recaptured bats, we observed long-term survival following rabies exposure and antibody waning, supporting hypotheses that immunological mechanisms influence viral maintenance. Finally, seroprevalence in bats was only weakly correlated with outbreaks in livestock, reinforcing the challenge of spillover prediction even with extensive data. Together our results suggest that rabies maintenance requires transmission among multiple, nearby bat colonies which may be facilitated by waning of protective immunity. However, the likelihood of incursions and dynamics of transmission within bat colonies appear largely independent of bat ecology. The implications of these results for spillover anticipation and controlling transmission at the source are discussed.
Project description:During the past decade, incidence of human infection with rabies virus (RABV) spread by the common vampire bat (Desmodus rotundus) increased considerably in South America, especially in remote areas of the Amazon rainforest, where these bats commonly feed on humans. To better understand the epizootiology of rabies associated with vampire bats, we used complete sequences of the nucleoprotein gene to infer phylogenetic relationships among 157 RABV isolates collected from humans, domestic animals, and wildlife, including bats, in Peru during 2002-2007. This analysis revealed distinct geographic structuring that indicates that RABVs spread gradually and involve different vampire bat subpopulations with different transmission cycles. Three putative new RABV lineages were found in 3 non-vampire bat species that may represent new virus reservoirs. Detection of novel RABV variants and accurate identification of reservoir hosts are critically important for the prevention and control of potential virus transmission, especially to humans.
Project description:A major obstacle to anticipating the cross-species transmission of zoonotic diseases and developing novel strategies for their control is the scarcity of data informing how these pathogens circulate within natural reservoir populations. Vampire bats are the primary reservoir of rabies in Latin America, where the disease remains among the most important viral zoonoses affecting humans and livestock. Unpredictable spatiotemporal dynamics of rabies within bat populations have precluded anticipation of outbreaks and undermined widespread bat culling programs. By analysing 1146 vampire bat-transmitted rabies (VBR) outbreaks in livestock across 12 years in Peru, we demonstrate that viral expansions into historically uninfected zones have doubled the recent burden of VBR. Viral expansions are geographically widespread, but severely constrained by high elevation peaks in the Andes mountains. Within Andean valleys, invasions form wavefronts that are advancing towards large, unvaccinated livestock populations that are heavily bitten by bats, which together will fuel high transmission and mortality. Using spatial models, we forecast the pathways of ongoing VBR epizootics across heterogeneous landscapes. These results directly inform vaccination strategies to mitigate impending viral emergence, reveal VBR as an emerging rather than an enzootic disease and create opportunities to test novel interventions to manage viruses in bat reservoirs.
Project description:BackgroundAnimal control measures in Latin America have decreased the incidence of urban human rabies transmitted by dogs and cats; currently most cases of human rabies are transmitted by bats. In 2004-2005, rabies outbreaks in populations living in rural Brazil prompted widespread vaccination of exposed and at-risk populations. More than 3,500 inhabitants of Augusto Correa (Pará State) received either post-exposure (PEP) or pre-exposure (PrEP) prophylaxis. This study evaluated the persistence of rabies virus-neutralizing antibodies (RVNA) annually for 4 years post-vaccination. The aim was to evaluate the impact of rabies PrEP and PEP in a population at risk living in a rural setting to help improve management of vampire bat exposure and provide additional data on the need for booster vaccination against rabies.Methodology/principal findingsThis prospective study was conducted in 2007 through 2009 in a population previously vaccinated in 2005; study participants were followed-up annually. An RVNA titer >0.5 International Units (IU)/mL was chosen as the threshold of seroconversion. Participants with titers ≤0.5 IU/mL or Equivalent Units (EU)/mL at enrollment or at subsequent annual visits received booster doses of purified Vero cell rabies vaccine (PVRV). Adherence of the participants from this Amazonian community to the study protocol was excellent, with 428 of the 509 (84%) who attended the first interview in 2007 returning for the final visit in 2009. The long-term RVNA persistence was good, with 85-88.0% of the non-boosted participants evaluated at each yearly follow-up visit remaining seroconverted. Similar RVNA persistence profiles were observed in participants originally given PEP or PrEP in 2005, and the GMT of the study population remained >1 IU/mL 4 years after vaccination. At the end of the study, 51 subjects (11.9% of the interviewed population) had received at least one dose of booster since their vaccination in 2005.Conclusions/significanceThis study and the events preceding it underscore the need for the health authorities in rabies enzootic countries to decide on the best strategies and timing for the introduction of routine rabies PrEP vaccination in affected areas.
Project description:Rabies virus (RABV) transmitted by the common vampire bat (Desmodus rotundus) poses a threat to agricultural development and public health throughout the Neotropics. The ecology and evolution of rabies host-pathogen dynamics are influenced by two infection-induced behavioural changes. RABV-infected hosts often exhibit increased aggression which facilitates transmission, and rabies also leads to reduced activity and paralysis prior to death. Although several studies document rabies-induced behavioural changes in rodents and other dead-end hosts, surprisingly few studies have measured these changes in vampire bats, the key natural reservoir throughout Latin America. Taking advantage of an experiment designed to test an oral rabies vaccine in captive male vampire bats, we quantify for the first time, to our knowledge, how rabies affects allogrooming and aggressive behaviours in this species. Compared to non-rabid vampire bats, rabid individuals reduced their allogrooming prior to death, but we did not detect increases in aggression among bats. To put our results in context, we review what is known and what remains unclear about behavioural changes of rabid vampire bats (resumen en español, electronic supplementary material, S1).
Project description:We isolated and characterized Nipah virus (NiV) from Pteropus vampyrus bats, the putative reservoir for the 1998 outbreak in Malaysia, and provide evidence of viral recrudescence. This isolate is monophyletic with previous NiVs in combined analysis, and the nucleocapsid gene phylogeny species.
Project description:The vampire bat (Desmodus rotundus) is a haematophagous animal that feeds exclusively on the blood of domestic mammals. Vampire bat feeding habits enable their contact with mammalian hosts and may enhance zoonotic spillover. Moreover, they may carry several pathogenic organisms, including coronaviruses (CoVs), for which they are important hosts. The human pathogens that cause severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV) and possibly coronavirus disease 2019 (SARS-CoV-2) all originated in bats but required bridge hosts to spread into human populations. To monitor the presence of potential zoonotic viruses in bats, the present work evaluated the presence of CoVs in vampire bats from southern Brazil. A total of 101 vampire bats were captured and euthanized between 2017 and 2019 in Rio Grande do Sul state, southern Brazil. The brain, heart, liver, lungs, kidneys and intestines were collected and macerated individually. The samples were pooled and submitted to high-throughput sequencing (HTS) using the Illumina MiSeq platform and subsequently individually screened using a pancoronavirus RT-PCR protocol. We detected CoV-related sequences in HTS, but only two (2/101; 1.98%) animals had CoV detected in the intestines by RT-PCR. Partial sequences of RdRp and spike genes were obtained in the same sample and the RdRp region in the other sample. The sequences were classified as belonging to Alphacoronavirus. The sequences were closely related to alphacoronaviruses detected in vampire bats from Peru. The continuous monitoring of bat CoVs may help to map and predict putative future zoonotic agents with great impacts on human health.
Project description:Bats are important reservoirs for emerging infectious diseases, yet the mechanisms that allow highly virulent pathogens to persist within bat populations remain obscure. In Latin America, vampire-bat-transmitted rabies virus represents a key example of how such uncertainty can impede efforts to prevent cross-species transmission. Despite decades of agricultural and human health losses, control efforts have had limited success. To establish persistence mechanisms of vampire-bat-transmitted rabies virus in Latin America, we use data from a spatially replicated, longitudinal field study of vampire bats in Peru to parameterize a series of mechanistic transmission models. We find that single-colony persistence cannot occur. Instead, dispersal of bats between colonies, combined with a high frequency of immunizing nonlethal infections, is necessary to maintain rabies virus at levels consistent with field observations. Simulations show that the strong spatial component to transmission dynamics could explain the failure of bat culls to eliminate rabies and suggests that geographic coordination of control efforts might reduce transmission to humans and domestic animals. These findings offer spatial dynamics as a mechanism for rabies persistence in bats that might be important for the understanding and control of other bat-borne pathogens.
Project description:BackgroundVampire bats are important rabies virus vectors, causing critical problems in both the livestock industry and public health sector in Latin America. In order to assess the epidemiological characteristics of vampire bat-transmitted rabies, the authors conducted phylogenetic and geographical analyses using sequence data of a large number of cattle rabies isolates collected from a wide geographical area in Brazil.MethodsPartial nucleoprotein genes of rabies viruses isolated from 666 cattle and 18 vampire bats between 1987 and 2006 were sequenced and used for phylogenetic analysis. The genetic variants were plotted on topographical maps of Brazil.ResultsIn this study, 593 samples consisting of 24 genetic variants were analyzed. Regional localization of variants was observed, with the distribution of several variants found to be delimited by mountain ranges which served as geographic boundaries. The geographical distributions of vampire-bat and cattle isolates that were classified as the identical phylogenetic group were found to overlap with high certainty. Most of the samples analyzed in this study were isolated from adjacent areas linked by rivers.ConclusionThis study revealed the existence of several dozen regional variants associated with vampire bats in Brazil, with the distribution patterns of these variants found to be affected by mountain ranges and rivers. These results suggest that epidemiological characteristics of vampire bat-related rabies appear to be associated with the topographical and geographical characteristics of areas where cattle are maintained, and the factors affecting vampire bat ecology.