Survival and virulence of Salmonella enterica serovar enteritidis filaments induced by reduced water activity.
Ontology highlight
ABSTRACT: Salmonella enterica serovar Enteritidis strain E40 filaments were developed under conditions of a reduced water activity (a(w)) of 0.95 in tryptic soy broth (TSB) or tryptic soy agar (TSA) supplemented with 8% or 7% NaCl, respectively. Filament formation was accompanied by an increase of biomass without an increase in CFU and was affected by incubation temperature and the physical milieu. The greatest amount of filaments was recovered from TSA with 7% NaCl and incubation at 30°C. Within 2 h of transfer to fresh TSB, filaments started to septate into normal-sized cells, resulting in a rapid increase in CFU. S. Enteritidis E40 filaments were not more tolerant of low- or high-temperature stresses than nonfilamented control cells. However, there was greater survival of filaments in 10% bile salts after 24 to 48 h of incubation, during pH 2.0 acid challenge for 10 min, and under desiccation on stainless steel surfaces at 25°C and 75.5% relative humidity for 7 days. S. Enteritidis E40 filaments invaded and multiplied within Caco-2 human intestinal epithelial cells to a similar degree as control cells when a comparable CFU of filaments and control cells was used. S. Enteritidis E40 filaments established a successful infection in mice via intragastric inoculation. The filaments colonized the gastrointestinal tract and disseminated to the spleen and liver at levels comparable to those attained by control cells, even when animals were inoculated with 10- to 100-fold fewer CFU. To our knowledge this is the first demonstration of virulence of stress-induced Salmonella filaments in vitro and in vivo. Formation of filaments by Salmonella in food products and food processing environments is significant to food safety, because detection and quantitation of the pathogen may be compromised. The finding that these filaments are virulent further enhances their potential public health impact.
SUBMITTER: Stackhouse RR
PROVIDER: S-EPMC3302626 | biostudies-literature | 2012 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA