Unknown

Dataset Information

0

P-glycoprotein-ATPase modulation: the molecular mechanisms.


ABSTRACT: P-glycoprotein-ATPase is an efflux transporter of broad specificity that counteracts passive allocrit influx. Understanding the rate of allocrit transport therefore matters. Generally, the rates of allocrit transport and ATP hydrolysis decrease exponentially with increasing allocrit affinity to the transporter. Here we report unexpectedly strong down-modulation of the P-glycoprotein-ATPase by certain detergents. To elucidate the underlying mechanism, we chose 34 electrically neutral and cationic detergents with different hydrophobic and hydrophilic characteristics. Measurement of the P-glycoprotein-ATPase activity as a function of concentration showed that seven detergents activated the ATPase as expected, whereas 27 closely related detergents reduced it significantly. Assessment of the free energy of detergent partitioning into the lipid membrane and the free energy of detergent binding from the membrane to the transporter revealed that the ratio, q, of the two free energies of binding determined the rate of ATP hydrolysis. Neutral (cationic) detergents with a ratio of q = 2.7 ± 0.2 (q > 3) followed the aforementioned exponential dependence. Small deviations from the optimal ratio strongly reduced the rates of ATP hydrolysis and flopping, respectively, whereas larger deviations led to an absence of interaction with the transporter. P-glycoprotein-ATPase inhibition due to membrane disordering by detergents could be fully excluded using (2)H-NMR-spectroscopy. Similar principles apply to modulating drugs.

SUBMITTER: Li-Blatter X 

PROVIDER: S-EPMC3309411 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

P-glycoprotein-ATPase modulation: the molecular mechanisms.

Li-Blatter Xiaochun X   Beck Andreas A   Seelig Anna A  

Biophysical journal 20120320 6


P-glycoprotein-ATPase is an efflux transporter of broad specificity that counteracts passive allocrit influx. Understanding the rate of allocrit transport therefore matters. Generally, the rates of allocrit transport and ATP hydrolysis decrease exponentially with increasing allocrit affinity to the transporter. Here we report unexpectedly strong down-modulation of the P-glycoprotein-ATPase by certain detergents. To elucidate the underlying mechanism, we chose 34 electrically neutral and cationic  ...[more]

Similar Datasets

| S-EPMC1820799 | biostudies-other
| S-EPMC1459361 | biostudies-literature
| S-EPMC2938181 | biostudies-literature
| S-EPMC5469503 | biostudies-literature
| S-EPMC3345530 | biostudies-literature
| S-EPMC6433073 | biostudies-literature
| S-EPMC2692987 | biostudies-literature
| S-EPMC3133394 | biostudies-literature
| S-EPMC10945470 | biostudies-literature
| S-EPMC4661392 | biostudies-literature