Project description:We compared 2 climate classification systems describing georeferenced environmental Cryptococcus gattii sensu lato isolations occurring during 1989-2016. Each system suggests the fungus was isolated in temperate climates before the 1999 outbreak on Vancouver Island, British Columbia, Canada. However, the Köppen-Geiger system is more precise and should be used to define climates where pathogens are detected.
Project description:In the present study, we analysed how geographical distribution of the fungal pathogen Cryptococcus gattii VGI in Europe and Mediterranean area has evolved in the last four decades based on the climatic changes, and we tried to predict the scenario for the next decade. Niche modelling by Maxent analysis showed that recent climate changes have significantly affected the distribution of the fungus revealing a gradual expansion of the fundamental niche from 1980 to 2009 followed by an impressive increase in the last decade (2010-2019) during which the environmental surface suitable for the fungal survival was more than doubled. In the next decade, our model predicted an increase in the area of distribution of C. gattii VGI from the coasts of the Mediterranean basin towards the more internal sub-continental areas. On the basis of these predictions, an increase of cases of cryptococcosis due to C. gattii VGI is expected in the next decade and a constant monitoring of the epidemiology of this fungal pathogen represents a crucial strategy to detect the onset of future outbreaks.
Project description:Until recently, Cryptococcus gattii infections occurred mainly in tropical and subtropical climate zones. However, during the past decade, C. gattii infections in humans and animals in Europe have increased. To determine whether the infections in Europe were acquired from an autochthonous source or associated with travel, we used multilocus sequence typing to compare 100 isolates from Europe (57 from 40 human patients, 22 from the environment, and 21 from animals) with 191 isolates from around the world. Of the 57 human patient isolates, 47 (83%) were obtained since 1995. Among the 40 patients, 24 (60%) probably acquired the C. gattii infection outside Europe; the remaining 16 (40%) probably acquired the infection within Europe. Human patient isolates from Mediterranean Europe clustered into a distinct genotype with animal and environmental isolates. These results indicate that reactivation of dormant C. gattii infections can occur many years after the infectious agent was acquired elsewhere.
Project description:Cryptococcus gattii is a basidiomycetous human fungal pathogen that typically causes infection in tropical and subtropical regions and is responsible for an ongoing outbreak in immunocompetent individuals on Vancouver Island and in the Pacific Northwest of the US. Pathogenesis of this species may be linked to its sexual cycle that generates infectious propagules called basidiospores. A marked predominance of only one mating type (α) in clinical and environmental isolates suggests that a-α opposite-sex reproduction may be infrequent or geographically restricted, raising the possibility of an alternative unisexual cycle involving cells of only α mating type, as discovered previously in the related pathogenic species Cryptococcus neoformans. Here we report observation of hallmark features of unisexual reproduction in a clinical isolate of C. gattii (isolate 97/433) and describe genetic and environmental factors conducive to this sexual cycle. Our results are consistent with population genetic evidence of recombination in the largely unisexual populations of C. gattii and provide a useful genetic model for understanding how novel modes of sexual reproduction may contribute to evolution and virulence in this species.
Project description:The genus Cryptococcus comprises more than 80 species, including C. neoformans and C. gattii, which are pathogenic to humans, mainly affecting the central nervous system. The two species differ in geographic distribution and environmental niche. C. neoformans has a worldwide distribution and is often isolated from bird droppings. On the contrary, C. gattii is reported in tropical and subtropical regions and is associated with Eucalyptus species. This review aims to describe the distribution of environmental isolates of the Cryptococcus neoformans species complex and the Cryptococcus gattii species complex in Colombia. A systematic investigation was carried out using different databases, excluding studies of clinical isolates reported in the country. The complex of the species of C. gattii is recovered mainly from trees of the genus Eucalyptus spp., while the complex of the species of C. neoformans is recovered mainly from avian excrement, primarily Columba livia (pigeons) excrement. In addition, greater positivity was found at high levels of relative humidity. Likewise, an association was observed between the presence of the fungus in places with little insolation and cold or temperate temperatures compared to regions with high temperatures.
Project description:Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40-100 nm diameter x500-3000 nm length). Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM) and by high voltage- EM (HVEM). Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12alpha mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN) in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs). These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN- mediated killing.