Project description:BackgroundInfluenza viruses can generate novel reassortants in coinfected cells. The global circulation and occasional introductions of pandemic H1N1/2009 virus in humans and in pigs, respectively, may allow this virus to reassort with other influenza viruses. These possible reassortment events might alter virulence and/or transmissibility of the new reassortants. Investigations to detect such possible reassortants should be included as a part of pandemic influenza surveillance plans.MethodsWe established a real-time reverse-transcription (RT)-PCR-based strategy for the detection of reassortment of pandemic H1N1/2009 virus. Singleplex SYBR green-based RT-PCR assays specific for each gene segment of pandemic H1N1/2009 were developed. These assays were evaluated with influenza viruses of various genetic backgrounds.ResultsAll human pandemic H1N1 (n = 27) and all seasonal human (n = 58) isolates were positive and negative, respectively, for all 8 segments. Of 48 swine influenza viruses isolated from our ongoing surveillance program of influenza viruses in swine, 10 were positive in all reactions. All 8 viral segments of these 10 samples were confirmed to be of pandemic H1N1 origin, indicating that these were caused by zoonotic transmissions from human to pigs. The 38 swine viruses that were nonpandemic H1N1/2009 had 1-6 gene segments positive in the tests. Further characterization of these nonpandemic H1N1/2009 swine viruses indicated that these PCR-positive genes were the precursor genes of the pandemic H1N1/2009 virus.ConclusionsOur results demonstrated that these assays can detect reintroductions of pandemic H1N1/2009 virus in pigs. These assays might be useful screening tools for identifying viral reassortants derived from pandemic H1N1/2009 or its precursors.
Project description:When novel influenza viruses cause human infections, it is critical to characterize the illnesses, viruses, and immune responses to infection in order to develop diagnostics, treatments, and vaccines. The objective of the study was to collect samples from patients with suspected or confirmed A(H1N1)pdm09 infections that could be made available to the scientific community. Respiratory secretions, sera and peripheral blood mononuclear cells (PBMCs) were collected sequentially (when possible) from patients presenting with suspected or previously confirmed A(H1N1)pdm09 infections. Clinical manifestations and illness outcomes were assessed. Respiratory secretions were tested for the presence of A(H1N1)pdm09 virus by means of isolation in tissue culture and real time RT-PCR. Sera were tested for the presence and level of HAI and neutralizing antibodies against the A(H1N1)pdm09 virus.Thirty patients with confirmed A(H1N1)pdm09 infection were enrolled at Baylor College of Medicine (BCM). Clinical manifestations of illness were consistent with typical influenza. Twenty-eight of 30 had virological confirmation of illness; all recovered fully. Most patients had serum antibody responses or high levels of antibody in convalescent samples. Virus-positive samples were sent to J. Craig Venter Institute for sequencing and sequences were deposited in GenBank. Large volumes of sera collected from 2 convalescent adults were used to standardize antibody assays; aliquots of these sera are available from the repository. Aliquots of serum, PBMCs and stool collected from BCM subjects and subjects enrolled at other study sites are available for use by the scientific community, upon request.
Project description:We describe virus isolation, full genome sequence analysis, and clinical pathology in ferrets experimentally inoculated with pandemic (H1N1) 2009 virus recovered from a clinically ill captive cheetah that had minimal human contact. Evidence of reverse zoonotic transmission by fomites underscores the substantial animal and human health implications of this virus.
Project description:The 1918 influenza A virus caused the most devastating pandemic, killing approximately 50 million people worldwide. Immunization with 1918-like and classical swine H1N1 virus vaccines results in cross-protective antibodies against the 2009 H1N1 pandemic influenza, indicating antigenic similarities among these viruses. In this study, we demonstrate that vaccination with the 2009 pandemic H1N1 vaccine elicits 1918 virus cross-protective antibodies in mice and humans, and that vaccination or passive transfer of human-positive sera reduced morbidity and conferred full protection from lethal challenge with the 1918 virus in mice. The spread of the 2009 H1N1 influenza virus in the population worldwide, in addition to the large number of individuals already vaccinated, suggests that a large proportion of the population now have cross-protective antibodies against the 1918 virus, greatly alleviating concerns and fears regarding the accidental exposure/release of the 1918 virus from the laboratory and the use of the virus as a bioterrorist agent.
Project description:BACKGROUND: The 2009 influenza A (H1N1) pandemic has required decision-makers to act in the face of substantial uncertainties. Simulation models can be used to project the effectiveness of mitigation strategies, but the choice of the best scenario may change depending on model assumptions and uncertainties. METHODS: We developed a simulation model of a pandemic (H1N1) 2009 outbreak in a structured population using demographic data from a medium-sized city in Ontario and epidemiologic influenza pandemic data. We projected the attack rate under different combinations of vaccination, school closure and antiviral drug strategies (with corresponding "trigger" conditions). To assess the impact of epidemiologic and program uncertainty, we used "combinatorial uncertainty analysis." This permitted us to identify the general features of public health response programs that resulted in the lowest attack rates. RESULTS: Delays in vaccination of 30 days or more reduced the effectiveness of vaccination in lowering the attack rate. However, pre-existing immunity in 15% or more of the population kept the attack rates low, even if the whole population was not vaccinated or vaccination was delayed. School closure was effective in reducing the attack rate, especially if applied early in the outbreak, but this is not necessary if vaccine is available early or if pre-existing immunity is strong. INTERPRETATION: Early action, especially rapid vaccine deployment, is disproportionately effective in reducing the attack rate. This finding is particularly important given the early appearance of pandemic (H1N1) 2009 in many schools in September 2009.
Project description:During May 2009-April 2010, we analyzed 692 samples of pandemic (H1N1) 2009 virus from patients in Mexico. We detected the H275Y substitution of the neuraminidase gene in a specimen from an infant with pandemic (H1N1) 2009 who was treated with oseltamivir. This virus was susceptible to zanamivir and resistant to adamantanes and oseltamivir.
Project description:The Virochip microarray (version 4.0) was used to detect viruses in patients from North America with unexplained influenza-like illness at the onset of the 2009 H1N1 pandemic.
Project description:Pandemic influenza viruses often cause severe disease in middle-aged adults without preexisting comorbidities. The mechanism of illness associated with severe disease in this age group is not well understood. Here we find preexisting serum antibodies that cross-react with, but do not protect against, 2009 H1N1 influenza virus in middle-aged adults. Nonprotective antibody is associated with immune complex-mediated disease after infection. We detected high titers of serum antibody of low avidity for H1-2009 antigen, and low-avidity pulmonary immune complexes against the same protein, in severely ill individuals. Moreover, C4d deposition--a marker of complement activation mediated by immune complexes--was present in lung sections of fatal cases. Archived lung sections from middle-aged adults with confirmed fatal influenza 1957 H2N2 infection revealed a similar mechanism of illness. These observations provide a previously unknown biological mechanism for the unusual age distribution of severe cases during influenza pandemics.
Project description:The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices.
Project description:A total of 828 community-dwelling adults were studied during the course of the pandemic (H1N1) 2009 outbreak in Singapore during June-September 2009. Baseline blood samples were obtained before the outbreak, and 2 additional samples were obtained during follow-up. Seroconversion was defined as a >4-fold increase in antibody titers to pandemic (H1N1) 2009, determined by using hemagglutination inhibition. Men were more likely than women to seroconvert (mean adjusted hazards ratio [HR] 2.23, mean 95% confidence interval [CI] 1.26-3.93); Malays were more likely than Chinese to seroconvert (HR 2.67, 95% CI 1.04-6.91). Travel outside Singapore during the study period was associated with seroconversion (HR 1.76, 95% CI 1.11-2.78) as was use of public transport (HR 1.81, 95% CI 1.05-3.09). High baseline antibody titers were associated with reduced seroconversion. This study suggests possible areas for intervention to reduce transmission during future influenza outbreaks.