Project description:Human hepatitis E virus infections may be caused by zoonotic transmission of virus genotypes 3 and 4. To determine whether rodents are a reservoir, we analyzed the complete nucleotide sequence of a hepatitis E-like virus from 2 Norway rats in Germany. The sequence suggests a separate genotype for this hepatotropic virus.
Project description:Hepatitis E is an emerging viral disease that is the leading cause of viral hepatitis in the world. The vast majority of hepatitis E cases in developed countries are caused by zoonotic genotypes 3 and 4 of hepatitis E virus (HEV) for which pig and wild boar and to lesser extent rabbits are the main reservoir. According to recent reports rabbits are a source of human HEV infection and highlight the risk of zoonotic foodborne transmission. Here we report the molecular analysis of a novel HEV strain identified in a rabbit during a countrywide surveillance of rabbits and hares in Germany, 2016. The analysis of the complete genome reveals characteristics of a putative novel recombinant subtype of the species Orthohepevirus A within the clade of genotype 3 but not closely related to any known subtypes. Importantly, the genome of this strain possesses a nucleotide exchange in the overlapping region of open reading frames ORF2/ORF3 interfering with a broadly applied diagnostic real-time RT-PCR. In conclusion, a new type of HEV strain was identified in a German rabbit with atypical and novel sequence characteristics.
Project description:The role of rodents in the epidemiology of zoonotic hepatitis E virus (HEV) infection has been a subject of considerable debate. Seroprevalence studies suggest widespread HEV infection in commensal Rattus spp. rats, but experimental transmission has been largely unsuccessful and recovery of zoonotic genotype 3 HEV RNA from wild Rattus spp. rats has never been confirmed. We surveyed R. rattus and R. norvegicus rats from across the United States and several international populations by using a hemi-nested reverse transcription PCR approach. We isolated HEV RNA in liver tissues from 35 of 446 rats examined. All but 1 of these isolates was relegated to the zoonotic HEV genotype 3, and the remaining sequence represented the recently discovered rat genotype from the United States and Germany. HEV-positive rats were detected in urban and remote localities. Genetic analyses suggest all HEV genotype 3 isolates obtained from wild Rattus spp. rats were closely related.
Project description:BackgroundHepatitis E virus (HEV) transmitted via the oral route through the consumption of contaminated water or uncooked or undercooked contaminated meat has been implicated in major outbreaks. Rats may play a critical role in HEV outbreaks, considering their negative effects on environmental hygiene and food sanitation. Although the serological evidence of HEV infection in wild rodents has been reported worldwide, the infectivity and propagation of HEV in wild rats remain unknown. To investigate if rats are a possible carrier of HEV, we studied wild Norway rats (Rattus norvegicus) that were caught near a pig farm, where HEV was prevalent among the pigs.MethodsWe examined 56 Norway rats for HEV. RNA from internal organs was examined for RT-PCR and positive samples were sequenced. Positive tissue samples were incubated with A549 cell line to isolate HEV. Anti-HEV antibodies were detected by ELISA.ResultsSixteen rats were seropositive, and the HEV RNA was detected in 10 of the 56 rats. Sequencing of the partial ORF1 gene from 7 samples resulted in partially sequenced HEV, belonging to genotype 3, which was genetically identical to the HEV prevalent in the swine from the source farm. The infectious HEVs were isolated from the Norway rats by using the human A549 cell line.ConclusionsThere was a relatively high prevalence (17.9%) of the HEV genome in wild Norway rats. The virus was mainly detected in the liver and spleen. The results indicate that these animals might be possible carrier of swine HEV in endemic regions. The HEV contamination risk due to rats needs to be examined in human habitats.
Project description:To explore the genetic diversity of avian hepatitis E virus strains, we characterized the near-complete genome of a strain detected in 2010 in Hungary, uncovering moderate genome sequence similarity with reference strains. Public health implications related to consumption of eggs or meat contaminated by avian hepatitis E virus, or to poultry handling, require thorough investigation.