Project description:Astroviruses belong to Astroviridae family which includes two main genera: Mamastroviruses that infect mammals, and Avastroviruses that infect avian hosts. Bats and wild birds are considered among the natural reservoirs for astroviruses. Infections in humans are associated with severe gastroenteritis, especially among children. We conducted surveillance for astroviruses in bats, wild birds, and humans in Egypt. Our results indicated relatively high prevalence of astroviruses in those hosts. Phylogenetic analysis revealed diversity of these viruses within hosts. Detected human viruses showed similarity with classic and variant human astroviruses, as well as similarity with animal-origin viruses. Viruses in bats were dispersed, with similarities to other bat viruses as well as other mammalian, including human, viruses. Wild bird viruses varied and were related to other avastroviruses, as well as human astroviruses. Our results indicate that astroviruses are common in bats, wild birds, and humans in Egypt, with a wide gene pool. Potential cross-species transmission may be occurring but should be verified by further surveillance and molecular studies.
Project description:Bats are increasingly recognized to harbor a wide range of viruses, and in most instances these viruses appear to establish long-term persistence in these animals. They are the reservoir of a number of human zoonotic diseases including Nipah, Ebola, and severe acute respiratory syndrome. We report the identification of novel groups of astroviruses in apparently healthy insectivorous bats found in Hong Kong, in particular, bats belonging to the genera Miniopterus and Myotis. Astroviruses are important causes of diarrhea in many animal species, including humans. Many of the bat astroviruses form distinct phylogenetic clusters in the genus Mamastrovirus within the family Astroviridae. Virus detection rates of 36% to 100% and 50% to 70% were found in Miniopterus magnater and Miniopterus pusillus bats, respectively, captured within a single bat habitat during four consecutive visits spanning 1 year. There was high genetic diversity of viruses in bats found within this single habitat. Some bat astroviruses may be phylogenetically related to human astroviruses, and further studies with a wider range of bat species in different geographic locations are warranted. These findings are likely to provide new insights into the ecology and evolution of astroviruses and reinforce the role of bats as a reservoir of viruses with potential to pose a zoonotic threat to human health.
Project description:Several novel astroviruses have been recently discovered in humans and in other animals. Here, we report results from our surveillance of astroviruses in human and rodent faecal samples in Hong Kong. Classical human astroviruses (n=9) and a human MLB1 astrovirus were detected in human faecal samples (n=622). Novel astroviruses were detected from 1.6?% of the faecal samples of urban brown rat (Rattus norvegicus) (n=441), indicating the prevalence of astrovirus infection in rats might be much lower than that recently observed in bats. These rat astroviruses were phylogenetically related to recently discovered human astroviruses MLB1 and MLB2, suggesting that the MLB viruses and these novel rat astroviruses may share a common ancestor.
Project description:Knowledge of porcine astrovirus diversity and epidemiology remains limited. We used a broad range PCR approach to investigate the presence and diversity of astroviruses in healthy pigs of different ages on 20 farms and in 3 slaughterhouses situated in the province of Quebec, Canada between 2005 and 2007. Our study unexpectedly revealed remarkable levels of genetic diversity and high prevalence of astroviruses in pigs of this province. Astroviruses were detected on every farm investigated and in all age groups of pigs, from suckling piglets to adults. In addition, we found that nearly 80% of healthy finisher pigs harbour astroviruses in their intestine at slaughter. Phylogenetic evidence based on partial polymerase and complete capsid sequences, suggests that porcine astroviruses do not form a monophyletic group but are rather found on separate branches across the mamastrovirus tree. In addition to type species strains, we found highly divergent strains that form two additional lineages, one of which falls outside existing taxonomic groups. The presence of diverse astroviruses in a majority of healthy pigs likely represents a continuous source of infection to piglets and possibly to other animal species including humans. Porcine astrovirus strains appeared phylogenetically related not only to prototypical human astroviruses, as was already known, but also to novel human strains recently discovered suggesting multiple cross species transmission events between these hosts and other animal species. Overall, the findings reported in this study suggest an active role of pigs in the evolution and ecology of the Astroviridae.
Project description:The mechanisms of astrovirus pathogenesis are largely unknown, in part due to a lack of a small-animal model of disease. Using shotgun sequencing and a custom analysis pipeline, we identified two novel astroviruses capable of infecting research mice, murine astrovirus (MuAstV) STL1 and STL2. Subsequent analysis revealed the presence of at least two additional viruses (MuAstV STL3 and STL4), suggestive of a diverse population of murine astroviruses in research mice. Complete genomic characterization and subsequent phylogenetic analysis showed that MuAstV STL1 to STL4 are members of the mamastrovirus genus and are likely members of a new mamastrovirus genogroup. Using Rag1(-/-) mice deficient in B and T cells, we demonstrate that adaptive immunity is required to control MuAstV infection. Furthermore, using Stat1(-/-) mice deficient in innate signaling, we demonstrate a role for the innate immune response in the control of MuAstV replication. Our results demonstrate that MuAstV STL permits the study of the mechanisms of astrovirus infection and host-pathogen interactions in a genetically manipulable small-animal model. Finally, we detected MuAstV in commercially available mice, suggesting that these viruses may be present in academic and commercial research mouse facilities, with possible implications for interpretation of data generated in current mouse models of disease.
Project description:Using a pan-astrovirus reverse transcription-PCR assay, a great diversity of novel avastroviruses was detected from wild bird and poultry samples. Two groups of astroviruses detected from wild birds are genetically related or highly similar to previously known viruses in poultry. Most interestingly, a novel group of astroviruses was detected in wild aquatic birds. Our results also reveal that different groups of astroviruses might have difference host ranges. This study has expanded our understanding regarding avastrovirus ecology.
Project description:Human astroviruses are a leading cause of gastrointestinal disease. Since their discovery in 1975, 8 closely related serotypes have been described in humans, and more recently, two new astrovirus species, astrovirus MLB1 and astrovirus VA1, were identified in diarrhea patients. In this study, we used consensus astrovirus primers targeting the RNA polymerase to define the diversity of astroviruses present in pediatric patients with diarrhea on two continents. From 416 stool specimens comprising two different cohorts from Vellore, India, 35 samples were positive. These positive samples were analyzed further by either sequencing of the approximately 400 bp amplicon generated by the consensus PCR or by performing additional RT-PCR specific for individual astroviruses. 19 samples contained the classic human astrovirus serotypes 1-8 while 7 samples were positive for the recently described astrovirus MLB1. Strikingly, from samples that were positive in the consensus PCR screen but negative in the specific PCR assays, five samples contained sequences that were highly divergent from all previously described astroviruses. Sequence analysis suggested that three novel astroviruses, tentatively named astroviruses VA2, MLB2 and VA3, were present in these five patient specimens (AstV-VA2 in 2 patients, AstV-MLB2 in 2 patients and AstV-VA3 in one patient). Using the same RT-PCR screening strategy, 13 samples out of 466 tested stool specimens collected in St. Louis, USA were positive. Nine samples were positive for the classic human astroviruses. One sample was positive for AstV-VA2, and 3 samples were positive for AstV-MLB2 demonstrating that these two viruses are globally widespread. Collectively, these findings underscore the tremendous diversity of astroviruses present in fecal specimens from diarrhea patients. Given that a significant fraction of diarrhea etiologies is currently unknown, it is plausible that these or other yet unrecognized astroviruses may be responsible for at least part of the undiagnosed cases.
Project description:Avian astroviruses comprise a diverse group of viruses affecting many avian species and causing enteritis, hepatitis, and nephritis. To date, six different astroviruses have been identified in avian species based on the species of origin and viral genome characteristics: two turkey-origin astroviruses [Turkey Astrovirus type 1 (TAstV-1) and type 2 (TAstV-2)]; two chicken-origin astroviruses [Avian Nephritis Virus (ANV) and Chicken Astrovirus (CAstV)]; and two duck-origin astrovirus [Duck Astrovirus type 1 (DAstV-1) and type 2 (DAstV-2)]. ANV has also been detected in turkeys, ducklings, pigeons, and guinea fowl; and TAstrovirus-2-like viruses have also been found in guinea fowl. Astroviruses are commonly associated with enteric disease syndromes in poultry including runting-stunting syndrome of broilers (RSS), poult enteritis complex or syndrome (PEC or PES), poult enteritis mortality syndrome (PEMS), and enteritis in guinea fowl. The molecular characterization of the different avian astroviruses shows great genetic variability among each type, and this variability influences the ability to detect these viruses by molecular and serological techniques. In this chapter, we review the different aspects related to avian astroviruses, including molecular biology, pathogenesis, diagnosis, and control.
Project description:Astroviruses, isolated from numerous avian and mammalian species including humans, are commonly associated with enteritis and encephalitis. Two astroviruses have previously been identified in cats, and while definitive evidence is lacking, an association with enteritis is suggested. Using metagenomic next-generation sequencing of viral nucleic acids from faecal samples, we identified two novel feline astroviruses termed Feline astrovirus 3 and 4. These viruses were isolated from healthy shelter-housed kittens (Feline astrovirus 3; 6448 bp) and from a kitten with diarrhoea that was co-infected with Feline parvovirus (Feline astrovirus 4, 6549 bp). Both novel astroviruses shared a genome arrangement of three open reading frames (ORFs) comparable to that of other astroviruses. Phylogenetic analysis of the concatenated ORFs, ORF1a, ORF1b and capsid protein revealed that both viruses were phylogenetically distinct from other feline astroviruses, although their precise evolutionary history could not be accurately determined due to a lack of resolution at key nodes. Large-scale molecular surveillance studies of healthy and diseased cats are needed to determine the pathogenicity of feline astroviruses as single virus infections or in co-infections with other enteric viruses.