Unknown

Dataset Information

0

Cortical networks produce three distinct 7-12 Hz rhythms during single sensory responses in the awake rat.


ABSTRACT: Cortical rhythms in the alpha/mu frequency range (7-12 Hz) have been variously related to "idling," anticipation, seizure, and short-term or working memory. This overabundance of interpretations suggests that sensory cortex may be able to produce more than one (and even more than two) distinct alpha/mu rhythms. Here we describe simultaneous local field potential and single-neuron recordings made from primary sensory (gustatory) cortex of awake rats and reveal three distinct 7-12 Hz de novo network rhythms within single sessions: an "early," taste-induced approximately 11 Hz rhythm, the first peak of which was a short-latency gustatory evoked potential; a "late," significantly lower-frequency (approximately 7 Hz) rhythm that replaced this first rhythm at approximately 750-850 ms after stimulus onset (consistently timed with a previously described shift in taste temporal codes); and a "spontaneous" spike-and-wave rhythm of intermediate peak frequency (approximately 9 Hz) that appeared late in the session, as part of a oft-described reduction in arousal/attention. These rhythms proved dissociable on many grounds: in addition to having different peak frequencies, amplitudes, and shapes and appearing at different time points (although often within single 3 s snippets of activity), the early and late rhythms proved to have completely uncorrelated session-to-session variability, and the spontaneous rhythm affected the early rhythm only (having no impact on the late rhythm). Analysis of spike-to-wave coupling suggested that the early and late rhythms are a unified part of discriminative taste process: the identity of phase-coupled single-neuron ensembles differed from taste to taste, and coupling typically lasted across the change in frequency. These data reveal that even rhythms confined to a narrow frequency band may still have distinct properties.

SUBMITTER: Tort AB 

PROVIDER: S-EPMC3318968 | biostudies-literature | 2010 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cortical networks produce three distinct 7-12 Hz rhythms during single sensory responses in the awake rat.

Tort Adriano B L AB   Fontanini Alfredo A   Kramer Mark A MA   Jones-Lush Lauren M LM   Kopell Nancy J NJ   Katz Donald B DB  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20100301 12


Cortical rhythms in the alpha/mu frequency range (7-12 Hz) have been variously related to "idling," anticipation, seizure, and short-term or working memory. This overabundance of interpretations suggests that sensory cortex may be able to produce more than one (and even more than two) distinct alpha/mu rhythms. Here we describe simultaneous local field potential and single-neuron recordings made from primary sensory (gustatory) cortex of awake rats and reveal three distinct 7-12 Hz de novo netwo  ...[more]

Similar Datasets

| S-EPMC7683574 | biostudies-literature
| S-EPMC2778076 | biostudies-literature
| S-EPMC5557038 | biostudies-literature
| S-EPMC8639786 | biostudies-literature
| S-EPMC6819254 | biostudies-literature
| S-EPMC2736907 | biostudies-literature
| S-EPMC5494195 | biostudies-literature
| S-EPMC4362698 | biostudies-literature
| S-EPMC3023368 | biostudies-literature
| S-EPMC10055189 | biostudies-literature