Unknown

Dataset Information

0

Novel genetic approach for in vivo vascular imaging in mice.


ABSTRACT: The formation and maintenance of a functional vasculature is essential for normal embryonic development, and genetic changes that affect the vasculature underlie pathogenesis in many human diseases. In vivo imaging in mouse models is required to understand the full complexity of mammalian vascular formation, which is a dynamic and 3-dimensional process. Optical microscopy of genetically expressed fluorescent reporter proteins offers high resolution but limited depth of penetration in vivo. Conversely, there are a plethora of molecular probes for alternative in vivo vascular imaging modalities, but few options for genetic control of contrast enhancement.To develop a reporter system for multimodal imaging of genetic processes involved in mammalian vascular biology.To approach this problem, we developed an optimal tagging system based on Biotag-BirA technology. In the resulting Biotag reporter system, coexpression of 2 interacting proteins results in biotin labeling of cell membranes, thus enabling multimodal imaging with "avidinated" probes. To assess this approach for in vivo imaging, we generated transgenic mice that expressed the Biotag-BirA transgene from a minimal Tie2 promoter. A variety of imaging methods were used to show the utility of this approach for quantitative analysis in embryonic and adult models of vascular development, using intravascular injection of avidinated probes for near infrared, ultrasound, and magnetic resonance imaging.The present results demonstrate the versatility of the Biotag system for studies of vascular biology in genetically engineered mice, providing a robust approach for multimodal in vivo imaging of genetic processes in the vasculature.

SUBMITTER: Bartelle BB 

PROVIDER: S-EPMC3319022 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel genetic approach for in vivo vascular imaging in mice.

Bartelle Benjamin B BB   Berríos-Otero César A CA   Rodriguez Joe J JJ   Friedland Anne E AE   Aristizábal Orlando O   Turnbull Daniel H DH  

Circulation research 20120228 7


<h4>Rationale</h4>The formation and maintenance of a functional vasculature is essential for normal embryonic development, and genetic changes that affect the vasculature underlie pathogenesis in many human diseases. In vivo imaging in mouse models is required to understand the full complexity of mammalian vascular formation, which is a dynamic and 3-dimensional process. Optical microscopy of genetically expressed fluorescent reporter proteins offers high resolution but limited depth of penetrat  ...[more]

Similar Datasets

| S-EPMC6170880 | biostudies-literature
| S-EPMC3032512 | biostudies-literature
| S-EPMC2673941 | biostudies-other
| S-EPMC6923434 | biostudies-literature
| S-EPMC2952595 | biostudies-literature
| S-EPMC7472236 | biostudies-literature
| S-EPMC7293075 | biostudies-literature
| S-EPMC3595196 | biostudies-literature
| S-EPMC4842766 | biostudies-literature
| S-EPMC5576511 | biostudies-literature