Unknown

Dataset Information

0

Quantitative proteomic analysis revealed 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone-induced up-regulation of 20S proteasome in cultured human fibroblast cells.


ABSTRACT: The tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone (NNK), is a well-known carcinogen. Although the ability of the metabolically activated form of NNK to generate DNA adducts is well established, little is known about the cellular pathways perturbed by NNK in its native state. In this study, we utilized stable isotope labeling by amino acid in cell culture (SILAC), together with mass spectrometry, to assess the perturbation of protein expression in GM00637 human skin fibroblast cells upon NNK exposure. With this approach, we were able to quantify 1412 proteins and 137 of them were with significantly altered expression following NNK exposure, including the up-regulation of all subunits of the 20S proteasome core complex. The up-regulation of the 20S core complex was also reflected by a significant increase in 20S proteasome activities in GM00637, IMR90, and MCF-7 cells upon NNK treatment. Furthermore, the ?-adrenergic receptor (?-AR) antagonist propranolol could attenuate significantly the NNK-induced increase in proteasome activity in all the three cell lines, suggesting that up-regulation of the 20S proteasome may be mediated through the ?-AR. Additionally, we found that NNK treatment altered the expression levels of other important proteins including mitochondrial proteins, cytoskeleton-associated proteins, and proteins involved in glycolysis and gluconeogenesis. Results from the present study provided novel insights into the cellular mechanisms targeted by NNK.

SUBMITTER: Prins JM 

PROVIDER: S-EPMC3321129 | biostudies-literature | 2012 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantitative proteomic analysis revealed 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone-induced up-regulation of 20S proteasome in cultured human fibroblast cells.

Prins John M JM   Wang Yinsheng Y  

Journal of proteome research 20120309 4


The tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone (NNK), is a well-known carcinogen. Although the ability of the metabolically activated form of NNK to generate DNA adducts is well established, little is known about the cellular pathways perturbed by NNK in its native state. In this study, we utilized stable isotope labeling by amino acid in cell culture (SILAC), together with mass spectrometry, to assess the perturbation of protein expression in GM00637 human  ...[more]

Similar Datasets

| S-EPMC8379623 | biostudies-literature
| S-EPMC1271798 | biostudies-literature
| S-EPMC3074188 | biostudies-literature
| S-EPMC6863390 | biostudies-literature
| S-EPMC10987551 | biostudies-literature
| S-EPMC107596 | biostudies-literature
| S-EPMC3324812 | biostudies-literature
| EMPIAR-11651 | biostudies-other
| S-EPMC8741524 | biostudies-literature
| S-EPMC7145288 | biostudies-literature