Project description:We tested 55 deceased vespertilionid bats of 12 species from southern Germany for virus infections. A new adenovirus was isolated from tissue samples of 2 Pipistrellus pipistrellus bats, which represents the only chiropteran virus isolate found in Europe besides lyssavirus (rabies virus). Evidence was found for adenovirus transmission between bats.
Project description:Yersinia enterocolitica is an important foodborne pathogen, and the determination of its virulence factors and genetic diversity within the food chain could help understand the epidemiology of yersiniosis. The aim of the present study was to detect the prevalence, and characterize the virulence determinants and genetic diversity, of Yersinia species isolated from meat. A total of 330 samples of retailed beef (n = 150) and pork (n = 180) in Latvia were investigated with culture and molecular methods. Whole genome sequencing (WGS) was applied for the detection of virulence and genetic diversity. The antimicrobial resistance of pathogenic Y. enterocolitica isolates was detected in accordance with EUCAST. Yersinia species were isolated from 24% (79/330) of meats, and the prevalence of Y. enterocolitica in pork (24%, 44/180) was significantly higher (p < 0.05) than in beef (13%, 19/150). Y. enterocolitica pathogenic bioserovars 2/O:9 and 4/O:3 were isolated from pork samples (3%, 6/180). Only resistance to ampicillin was confirmed in Y. enterocolitica 4/O:3 and 2/O:9 isolates, but not in other antimicrobials. Major virulence determinants, including ail, inv, virF, ystA and myfA, were confirmed with WGS in Y. enterocolitica 2/O:9 and 4/O:3. MLST typing revealed 15 STs (sequence types) of Y. enterocolitica with ST12 and ST18, which were associated with pathogenic bioserovars. For Y. enterocolitica 1A, Y. kristensenii, Y. intermedia and Y. frederiksenii, novel STs were registered (ST680-688). The presence of virulence genes and genetic characteristics of certain Y. enterocolitica STs confirm the common knowledge that pork could be an important source of pathogenic Yersinia.
Project description:BackgroundThe emergence of important viral diseases and their potential threat to humans has increased the interest in bats as potential reservoir species. Whereas the majority of studies determined the occurrence of specific zoonotic agents in chiropteran species, little is known about actual bat pathogens and impacts of disease on bat mortality. Combined pathological and microbiological investigations in free-ranging bats are sparse and often limited by small sample sizes. In the present study about 500 deceased bats of 19 European species (family Vespertilionidae) were subjected to a post-mortem examination followed by histo-pathological and bacteriological investigations. The bat carcasses originated from different geographical regions in Germany and were collected by bat researchers and bat rehabilitation centers.ResultsPathological examination revealed inflammatory lesions in more than half of the investigated bats. Lung was the predominantly affected organ (40%) irrespective of bat species, sex and age. To a lesser extent non-inflammatory organ tissue changes were observed. Comparative analysis of histo-pathology and bacteriology results identified 22 different bacterial species that were clearly associated with pathological lesions. Besides disease-related mortality, traumatic injuries represented an additional major cause of death. Here, attacks by domestic cats accounted for almost a half of these cases.ConclusionsThe present study shows that free-ranging bats not only serve as a reservoir of infectious agents, they are also vulnerable to various infectious diseases. Some of these microbial agents have zoonotic potential, but there is no evidence that European bats would pose a higher health hazard risk to humans in comparison to other wildlife.
Project description:Malassezia is a genus of medically-important, lipid-dependent yeasts that live on the skin of warm-blooded animals. The 17 described species have been documented primarily on humans and domestic animals, but few studies have examined Malassezia species associated with more diverse host groups such as wildlife. While investigating the skin mycobiota of healthy bats, we isolated a Malassezia sp. that exhibited only up to 92% identity with other known species in the genus for the portion of the DNA sequence of the internal transcribed spacer region that could be confidently aligned. The Malassezia sp. was cultured from the skin of nine species of bats in the subfamily Myotinae; isolates originated from bats sampled in both the eastern and western United States. Physiological features and molecular characterisation at seven additional loci (D1/D2 region of 26S rDNA, 18S rDNA, chitin synthase, second largest subunit of RNA polymerase II, ?-tubulin, translation elongation factor EF-1?, and minichromosome maintenance complex component 7) indicated that all of the bat Malassezia isolates likely represented a single species distinct from other named taxa. Of particular note was the ability of the Malassezia sp. to grow over a broad range of temperatures (7-40 °C), with optimal growth occurring at 24 °C. These thermal growth ranges, unique among the described Malassezia, may be an adaptation by the fungus to survive on bats during both the host's hibernation and active seasons. The combination of genetic and physiological differences provided compelling evidence that this lipid-dependent yeast represents a novel species described herein as Malassezia vespertilionis sp. nov. Whole genome sequencing placed the new species as a basal member of the clade containing the species M. furfur, M. japonica, M. obtusa, and M. yamatoensis. The genetic and physiological uniqueness of Malassezia vespertilionis among its closest relatives may make it important in future research to better understand the evolution, life history, and pathogenicity of the Malassezia yeasts.
Project description:Kolente virus (KOLEV) is a rhabdovirus originally isolated from ticks and a bat in Guinea, West Africa, in 1985. Although tests at the time of isolation suggested that KOLEV is a novel rhabdovirus, it has remained largely uncharacterized. We assembled the complete genome sequence of the prototype strain DakAr K7292, which was found to encode the five canonical rhabdovirus structural proteins (N, P, M, G and L) with alternative ORFs (>180 nt) in the P and L genes. Serologically, KOLEV exhibited a weak antigenic relationship with Barur and Fukuoka viruses in the Kern Canyon group. Phylogenetic analysis revealed that KOLEV represents a distinct and divergent lineage that shows no clear relationship to any rhabdovirus except Oita virus, although with limited phylogenetic resolution. In summary, KOLEV represents a novel species in the family Rhabdoviridae.
Project description:We developed a multilocus sequence typing (MLST) scheme and used it to study the population structure and evolutionary relationships of three pathogenic Yersinia species. MLST of these three Yersinia species showed a complex of two clusters, one composed of Yersinia pseudotuberculosis and Yersinia pestis and the other composed of Yersinia enterocolitica. Within the first cluster, the predominant Y. pestis sequence type 90 (ST90) was linked to Y. pseudotuberculosis ST43 by one locus difference, and 81.25% of the ST43 strains were from serotype O:1b, supporting the hypothesis that Y. pestis descended from the O:1b serotype of Y. pseudotuberculosis. We also found that the worldwide-prevalent serotypes O:1a, O:1b, and O:3 were predominated by specific STs. The second cluster consisted of pathogenic and nonpathogenic Y. enterocolitica strains, two of which may not have identical STs. The pathogenic Y. enterocolitica strains formed a relatively conserved group; most strains clustered within ST186 and ST187. Serotypes O:3, O:8, and O:9 were separated into three distinct blocks. Nonpathogenic Y. enterocolitica STs were more heterogeneous, reflecting genetic diversity through evolution. By providing a better and effective MLST procedure for use with the Yersinia community, valuable information and insights into the genetic evolutionary differences of these pathogens were obtained.
Project description:Two new rabies-related viruses were discovered in Russia during 2002. Viruses were isolated from bats in Eastern Siberia near Baikal Lake and in the western Caucasus Mountains. After preliminary antigenic and genetic characterization, we found that both viruses should be considered as new putative lyssavirus genotypes.
Project description:In this study, the prevalence of Yersinia pseudotuberculosis in wild boars in northeast Germany was determined. For that purpose, the tonsils of 503 wild boars were sampled. The presence of Y. pseudotuberculosis was studied by diagnostic PCR. Positive samples were analyzed by cultural detection using a modified cold enrichment protocol. Ten Y. pseudotuberculosis isolates were obtained, which were characterized by biotyping, molecular serotyping, and multilocus sequence typing (MLST). In addition, whole-genome sequences and the antimicrobial susceptibility of the isolates were analyzed. Yersinia pseudotuberculosis was isolated from male and female animals, most of which were younger than 1 year. A prevalence of 2% (10/503) was determined by cultural detection, while 6.4% (32/503) of the animals were positive by PCR. The isolates belonged to the biotypes 1 and 2 and serotypes O:1a (n = 7), O:1b (n = 2), and O:4a (n = 1). MLST analysis revealed three sequence types, ST9, ST23, and ST42. Except one isolate, all isolates revealed a strong resistance to colistin. The relationship of the isolates was studied by whole-genome sequencing demonstrating that they belonged to four clades, exhibiting five different pulsed-field gel electrophoresis (PFGE) restriction patterns and a diverse composition of virulence genes. Six isolates harbored the virulence plasmid pYV. Besides two isolates, all isolates contained ail and inv genes and a complete or incomplete high-pathogenicity island (HPI). None of them possessed a gene for the superantigen YPM. The study shows that various Y. pseudotuberculosis strains exist in wild boars in northeast Germany, which may pose a risk to humans.IMPORTANCEYersinia pseudotuberculosis is a foodborne pathogen whose occurrence is poorly understood. One reason for this situation is the difficulty in isolating the species. The methods developed for the isolation of Yersinia enterocolitica are not well suited for Y. pseudotuberculosis We therefore designed a protocol which enabled the isolation of Y. pseudotuberculosis from a relatively high proportion of PCR-positive wild boar tonsils. The study indicates that wild boars in northeast Germany may carry a variety of Y. pseudotuberculosis strains, which differ in terms of their pathogenic potential and other properties. Since wild boars are widely distributed in German forests and even populate cities such as Berlin, they may transmit yersiniae to other animals and crop plants and may thus cause human infections through the consumption of contaminated food. Therefore, the prevalence of Y. pseudotuberculosis should be determined also in other animals and regions to learn more about the natural reservoir of this species.