Project description:BackgroundLeptospirosis is a highly endemic bacterial zoonosis in French Polynesia (FP). Nevertheless, data on the epidemiology of leptospirosis in FP are scarce. We conducted molecular studies on Leptospira isolated from humans and the potential main animal reservoirs in order to identify the most likely sources for human infection.Methodology/principal findingsWild rats (n = 113), farm pigs (n = 181) and domestic dogs (n = 4) were screened for Leptospira infection in Tahiti, the most populated island in FP. Positive samples were genotyped and compared to Leptospira isolated from human cases throughout FP (n = 51), using secY, 16S and LipL32 sequencing, and MLST analysis. Leptospira DNA was detected in 20.4% of rats and 26.5% of pigs. We identified two Leptospira species and three sequence types (STs) in animals and humans: Leptospira interrogans ST140 in pigs only and L. interrogans ST17 and Leptospira borgpetersenii ST149 in humans and rats. Overall, L. interrogans was the dominant species and grouped into four clades: one clade including a human case only, two clades including human cases and dogs, and one clade including human cases and rats. All except one pig sample showed a unique L. interrogans (secY) genotype distinct from those isolated from humans, rats and dogs. Moreover, LipL32 sequencing allowed the detection of an additional Leptospira genotype in pigs, clearly distinct from the previous ones.Conclusions/significanceOur data confirm rats as a major potential source for human leptospirosis in FP. By contrast to what was expected, farm pigs did not seem to be a major reservoir for the Leptospira genotypes identified in human patients. Thus, further investigations will be required to determine their significance in leptospirosis transmission in FP.
Project description:A total of 554 fleas were collected in the Moroccan Casablanca and Tiznit regions from domesticated animals and ruminants between August 2007 and October 2008 and were tested for the presence of Rickettsia spp. and Bartonella spp. using molecular methods. For the first time in Morocco, we found Rickettsia felis, the agent of flea-borne spotted fever in Ctenocephalides felis; B. henselae, an agent of cat scratch disease; and Bartonella clarridgeiae, a cat pathogen and potentially a human pathogen.
Project description:Cats and their fleas collected in Guatemala were investigated for the presence of Bartonella infections. Bartonella bacteria were cultured from 8.2% (13/159) of cats, and all cultures were identified as B. henselae. Molecular analysis allowed detection of Bartonella DNA in 33.8% (48/142) of cats and in 22.4% (34/152) of cat fleas using gltA, nuoG, and 16S-23S internal transcribed spacer targets. Two Bartonella species, B. henselae and B. clarridgeiae, were identified in cats and cat fleas by molecular analysis, with B. henselae being more common than B. clarridgeiae in the cats (68.1%; 32/47 vs 31.9%; 15/47). The nuoG was found to be less sensitive for detecting B. clarridgeiae compared with other molecular targets and could detect only two of the 15 B. clarridgeiae-infected cats. No significant differences were observed for prevalence between male and female cats and between different age groups. No evident association was observed between the presence of Bartonella species in cats and in their fleas.
Project description:BACKGROUND: Awareness for flea- and tick-borne infections has grown in recent years and the range of microorganisms associated with these ectoparasites is rising. Bartonella henselae, the causative agent of Cat Scratch Disease, and other Bartonella species have been reported in fleas and ticks. The role of Ixodes ricinus ticks in the natural cycle of Bartonella spp. and the transmission of these bacteria to humans is unclear. Rickettsia spp. have also been reported from as well ticks as also from fleas. However, to date no flea-borne Rickettsia spp. were reported from the Netherlands. Here, the presence of Bartonellaceae and Rickettsiae in ectoparasites was investigated using molecular detection and identification on part of the gltA- and 16S rRNA-genes. RESULTS: The zoonotic Bartonella clarridgeiae and Rickettsia felis were detected for the first time in Dutch cat fleas. B. henselae was found in cat fleas and B. schoenbuchensis in ticks and keds feeding on deer. Two Bartonella species, previously identified in rodents, were found in wild mice and their fleas. However, none of these microorganisms were found in 1719 questing Ixodes ricinus ticks. Notably, the gltA gene amplified from DNA lysates of approximately 10% of the questing nymph and adult ticks was similar to that of an uncultured Bartonella-related species found in other hard tick species. The gltA gene of this Bartonella-related species was also detected in questing larvae for which a 16S rRNA gene PCR also tested positive for "Candidatus Midichloria mitochondrii". The gltA-gene of the Bartonella-related species found in I. ricinus may therefore be from this endosymbiont. CONCLUSIONS: We conclude that the risk of acquiring Cat Scratch Disease or a related bartonellosis from questing ticks in the Netherlands is negligible. On the other hand fleas and deer keds are probable vectors for associated Bartonella species between animals and might also transmit Bartonella spp. to humans.
Project description:The presence of Rickettsia felis, Bartonella henselae and B. clarridgeiae in 209 fleas (Ctenocephalides felis) obtained from domestic cats and dogs in several locations in Malaysia was investigated in this study. Using a polymerase chain reaction specific for the citrate synthase (gltA) and 17-kD antigenic protein (17kD) genes of rickettsiae, we detected R. felis DNA in 6 (2.9%) fleas. For detection of bartonellae, amplification of the heme-binding protein (pap31) and riboflavin synthase (ribC) genes identified B. henselae and B. clarridgeiae DNA in 24 (11.5%) and 40 (19.1%) fleas, respectively. The DNA of B. henselae and B. clarridgeiae was detected in 10 (4.8%) fleas. Two B. henselae genogroups (Marseille and Houston-1) were detected in this study; genogroup Marseille (genotype Fizz) was found more often in the fleas. The findings in this study suggest fleas as potential vectors of rickettsioses and cat-scratch disease in this country.
Project description:Cat fleas (Ctenocephalides felis) are the most commonly recognised ectoparasites of domestic pets globally and are frequently implicated in the transmission of a variety of zoonotic vector-borne pathogens. The aim of the present study was to investigate the morphological and molecular identity of fleas parasitising cats and dogs in Northern Laos and screen them for a range of bacterial pathogens. Fleas (n = 120) were collected from dogs and cats and morphologically identified as Ctenocephalides felis (115/120), Ctenocephalides orientis (4/120) and Pulex irritans (1/120). Molecular barcoding using the cytochrome c oxidase subunit I gene (cox1) was used to confirmed species identity of 21 selected fleas. The cat flea (C. felis) was the most dominant flea identified. Rickettsia and Bartonella spp. DNA was detected in 21/21 and 7/21 samples, respectively, via a multiplex real-time PCR targeting gltA and ssrA. Sequencing of the seven Bartonella-positive samples and ten Rickettsia-positive samples revealed Bartonella clarridgeiae, Bartonella rochalimae, Rickettsia felis and Rickettsia sp. genotype RF2125 DNA. Anaplasma platys DNA was detected in a single C. felis after 20 of the 21 DNA samples were screened using a commercial PCR panel for vector-borne pathogens. The detection of a range of bacterial pathogens in fleas from owned cats and dogs in Northern Laos provides further evidence to the importance of these ectoparasites as vectors of zoonotic diseases in the region.
Project description:The prevalences of Bartonella, Rickettsia, and Wolbachia were investigated in 309 cat fleas from France by polymerase chain reaction (PCR) assay and sequencing with primers derived from the gltA gene for Rickettsia, the its and pap31 genes for Bartonella, and the 16S rRNA gene for Anaplasmataceae. Positive PCR results were confirmed by using the Lightcycler and specific primers for the rOmpB of Rickettsia and gltA of Bartonella. R. felis was detected in 25 fleas (8.1%), W. pipientis, an insect symbiont, in 55 (17.8%), and Bartonella in 81 (26.2%), including B. henselae (9/81; 11.1%), B. clarridgeiae (55/81; 67.9%), B. quintana (14/81; 17.3%), and B. koehlerae (3/81; 3.7%). This is the first report of the amplification of B. quintana from fleas and the first description of B. koehlerae in fleas from an area outside the United States. Cat fleas may be more important vectors of human diseases than previously reported.
Project description:The aim of the present work was to determine by blood culture the prevalence of blood infection with Bartonella species in a well-defined, European, urban stray cat population. Therefore, 94 stray cats were trapped from 10 cat colonies. Blood samples of these cats were cultured on both blood agar and liquid medium in order to raise the likelihood of bacterial detection. Fifty blood samples (53%) gave a positive culture result for Bartonella species. Isolate identification was performed by sequencing the first 430 bases of the 16S ribosomal DNA. Three types of sequences were thus obtained. The first type (17 isolates; 34%) was identical to that of B. henselae Houston-1 and the corresponding strains were referred as B. henselae type I. The second sequence type (18 isolates; 36%) was identical to that initially described as "BA-TF," and the corresponding strains were referred to as B. henselae type II. The third sequence type (15 isolates; 30%) was identical to that of the Bartonella clarridgeiae type strain (ATCC 51734). Our study points out the major role of stray cats as a reservoir of Bartonella spp. which can be transmitted to pet cats and, consequently, to humans. The study also highlights the high prevalence of B. clarridgeiae (16%) in the blood of stray cats.