Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells.
Ontology highlight
ABSTRACT: Epigenetic modifications are involved in the initiation and progression of cancer. Expression patterns and activity of DNA methyltransferases (DNMTs) are strictly controlled in normal cells, however, regulation of these enzymes is lost in cancer cells due to unknown reasons. Cancer therapies which target DNMTs are promising treatments of hematologic cancers, but they lack effectiveness in solid tumors. Solid tumors exhibit areas of hypoxia and hypoglycaemia due to their irregular and dysfunctional vasculature, and we previously showed that hypoxia reduces global DNA methylation. Colorectal carcinoma (CRC) cells (HCT116 and 379.2; p53+/+ and p53-/-, respectively) were subjected to ischemia (hypoxia and hypoglycaemia) in vitro, and levels of DNMTs were assessed. We found a significant decrease in mRNA for DNMT1, DNMT3a and DNMT3b, and similar reductions in DNMT1 and DNMT3a protein levels were detected by western blotting. In addition, total activity levels of DNMTs (as measured by an ELISA-based DNMT activity assay) were reduced in cells exposed to hypoxic and hypoglycaemic conditions. Immunofluorescence of HCT116 tumor xenografts demonstrated an inverse relationship between ischemia (as revealed by carbonic anhydrase IX staining) and DNMT1 protein. Bisulfite sequencing of the proximal promoter region of p16INK4a showed a decrease in 5-methylcytosine following in vitro exposure to ischemia. These studies provide evidence for the down-regulation of DNMTs and modulation of methylation patterns by hypoxia and hypoglycaemia in human CRC cells, both in vitro and in vivo. Our findings suggest that ischemia, either intrinsic or induced through the use of anti-angiogenic drugs, may influence epigenetic patterning and hence tumor progression.
SUBMITTER: Skowronski K
PROVIDER: S-EPMC3322492 | biostudies-literature | 2010 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA