Unknown

Dataset Information

0

Proteasomal inhibition restores biological function of mis-sense mutated dysferlin in patient-derived muscle cells.


ABSTRACT: Dysferlin is a transmembrane protein implicated in surface membrane repair of muscle cells. Mutations in dysferlin cause the progressive muscular dystrophies Miyoshi myopathy, limb girdle muscular dystrophy 2B, and distal anterior compartment myopathy. Dysferlinopathies are inherited in an autosomal recessive manner, and many patients with this disease harbor mis-sense mutations in at least one of their two pathogenic DYSF alleles. These patients have significantly reduced or absent dysferlin levels in skeletal muscle, suggesting that dysferlin encoded by mis-sense alleles is rapidly degraded by the cellular quality control system. We reasoned that mis-sense mutated dysferlin, if salvaged from degradation, might be biologically functional. We used a dysferlin-deficient human myoblast culture harboring the common R555W mis-sense allele and a DYSF-null allele, as well as control human myoblast cultures harboring either two wild-type or two null alleles. We measured dysferlin protein and mRNA levels, resealing kinetics of laser-induced plasmalemmal wounds, myotube formation, and cellular viability after treatment of the human myoblast cultures with the proteasome inhibitors lactacystin or bortezomib (Velcade). We show that endogenous R555W mis-sense mutated dysferlin is degraded by the proteasomal system. Inhibition of the proteasome by lactacystin or Velcade increases the levels of R555W mis-sense mutated dysferlin. This salvaged protein is functional as it restores plasma membrane resealing in patient-derived myoblasts and reverses their deficit in myotube formation. Bortezomib and lactacystin did not cause cellular toxicity at the regimen used. Our results raise the possibility that inhibition of the degradation pathway of mis-sense mutated dysferlin could be used as a therapeutic strategy for patients harboring certain dysferlin mis-sense mutations.

SUBMITTER: Azakir BA 

PROVIDER: S-EPMC3323038 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteasomal inhibition restores biological function of mis-sense mutated dysferlin in patient-derived muscle cells.

Azakir Bilal A BA   Di Fulvio Sabrina S   Kinter Jochen J   Sinnreich Michael M  

The Journal of biological chemistry 20120208 13


Dysferlin is a transmembrane protein implicated in surface membrane repair of muscle cells. Mutations in dysferlin cause the progressive muscular dystrophies Miyoshi myopathy, limb girdle muscular dystrophy 2B, and distal anterior compartment myopathy. Dysferlinopathies are inherited in an autosomal recessive manner, and many patients with this disease harbor mis-sense mutations in at least one of their two pathogenic DYSF alleles. These patients have significantly reduced or absent dysferlin le  ...[more]

Similar Datasets

| S-EPMC5012550 | biostudies-literature
| S-EPMC3502493 | biostudies-literature
| S-EPMC11369594 | biostudies-literature
| S-EPMC8741482 | biostudies-literature
| S-EPMC9675822 | biostudies-literature
| S-EPMC6668701 | biostudies-literature
| S-EPMC3900233 | biostudies-literature
2024-05-29 | GSE263299 | GEO
2024-05-29 | GSE263300 | GEO
| S-EPMC3241698 | biostudies-literature