Unknown

Dataset Information

0

Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities.


ABSTRACT: BACKGROUND:We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice. FINDINGS/RESULTS:From May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS) (http://www.Illumina.com) analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 150/200 kb. All cases were selected by a clinical geneticist after excluding the most common aneuploidies by RAD (rapid aneuploidy detection). Pre-test genetic counselling was offered in all cases.In 24/207 (11,6%) foetuses a clinically relevant genetic abnormality was detected. Only 8/24 abnormalities would have been detected if only routine karyotyping was performed. Submicroscopic abnormalities were found in 16/207 (7,7%) cases. The array results were achieved within 1-2 weeks after amniocentesis. CONCLUSIONS:Prenatal SNP array testing is faster than karyotyping and allows detecting much smaller aberrations (~0.15 Mb) in addition to the microscopic unbalanced chromosome abnormalities detectable with karyotyping (~ > 5 Mb). Since karyotyping would have missed 66% (16/24) of genomic abnormalities in our cohort, we propose to perform genomic high resolution array testing assisted by pre-test counselling as a primary prenatal diagnostic test in cases of foetal ultrasound abnormalities.

SUBMITTER: Srebniak MI 

PROVIDER: S-EPMC3328283 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice.<h4>Findings/results</h4>From May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS) (http://www.Illumina.com) analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 15  ...[more]

Similar Datasets

| S-EPMC8701951 | biostudies-literature
| S-EPMC3309345 | biostudies-literature
| S-EPMC4271441 | biostudies-literature
| S-EPMC4930096 | biostudies-literature
| S-EPMC2909938 | biostudies-literature
| S-EPMC7149929 | biostudies-literature
| S-EPMC3230359 | biostudies-literature
| S-EPMC7677511 | biostudies-literature
| S-EPMC7905897 | biostudies-literature
| S-EPMC3468603 | biostudies-literature