The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in β-amyloid peptide toxicity.
Ontology highlight
ABSTRACT: AIM: Functional in vivo studies on the mitochondrial thioredoxin system are hampered by the embryonic or larval lethal phenotypes displayed by murine or Drosophila knock-out models. Thus, the access to alternative metazoan knock-out models for the mitochondrial thioredoxin system is of critical importance. RESULTS: We report here the characterization of the mitochondrial thioredoxin system of Caenorhabditis elegans that is composed of the genes trx-2 and trxr-2. We demonstrate that the proteins thioredoxin 2 (TRX-2) and thioredoxin reductase 2 (TRXR-2) localize to the mitochondria of several cells and tissues of the nematode and that trx-2 and trxr-2 are upregulated upon induction of the mitochondrial unfolded protein response. Surprisingly, C. elegans trx-2 (lof ) and trxr-2 (null) single and double mutants are viable and display similar growth rates as wild-type controls. Moreover, the lack of the mitochondrial thioredoxin system does not affect longevity, reactive oxygen species production or the apoptotic program. Interestingly, we found a protective role of TRXR-2 in a transgenic nematode model of Alzheimer's disease (AD) that expresses human β-amyloid peptide and causes an age-dependent progressive paralysis. Hence, trxr-2 downregulation enhanced the paralysis phenotype, while a strong decrease of β-amyloid peptide and amyloid deposits occurred when TRXR-2 was overexpressed. INNOVATION: C. elegans provides the first viable metazoan knock-out model for the mitochondrial thioredoxin system and identifies a novel role of this system in β-amyloid peptide toxicity and AD. CONCLUSION: The nematode strains characterized in this work make C. elegans an ideal model organism to study the pathophysiology of the mitochondrial thioredoxin system at the level of a complete organism.
SUBMITTER: Cacho-Valadez B
PROVIDER: S-EPMC3329951 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA