Effects of photoperiod and food restriction on the reproductive physiology of female California mice.
Ontology highlight
ABSTRACT: Many temperate-zone animals use changes in photoperiod to time breeding. Shorter term cues, like food availability, are integrated with photoperiod to adjust reproductive timing under unexpected conditions. Many mice of the genus Peromyscus breed in the summer. California mice (Peromyscus californicus), however, can breed year round, but tend to begin breeding in the winter. Glial cells may be involved in transduction of environmental signals that regulate gonadotrophin releasing hormone I (GnRH) activity. We examined the effects of diet and photoperiod on reproduction in female California mice. Mice placed on either short days (8L:16D) or long days (16L:8D) were food restricted (80% of normal intake) or fed ad libitum. Short day-food restricted mice showed significant regression of the reproductive system. GnRH-immunoreactivity was increased in the tuberal hypothalamus of long day-food restricted mice. This may be associated with the sparing effect long days have when mice are food restricted. The number of GFAP-immunoreactive fibers in proximity to GnRH nerve terminals correlated negatively with uterine size in ad libitum but not food restricted mice, suggesting diet may alter glial regulation of the reproductive axis. There was a trend towards food restriction increasing uterine expression of c-fos mRNA, an estrogen dependent gene. Similar to other seasonally breeding rodents, short days render the reproductive system of female California mice more susceptible to effects of food restriction. This may be vestigial, or it may have evolved to mitigate consequences of unexpectedly poor winter food supplies.
SUBMITTER: Steinman MQ
PROVIDER: S-EPMC3334427 | biostudies-literature | 2012 May
REPOSITORIES: biostudies-literature
ACCESS DATA