Unknown

Dataset Information

0

Genetic adaptation to high altitude in the Ethiopian highlands.


ABSTRACT: BACKGROUND:Genomic analysis of high-altitude populations residing in the Andes and Tibet has revealed several candidate loci for involvement in high-altitude adaptation, a subset of which have also been shown to be associated with hemoglobin levels, including EPAS1, EGLN1, and PPARA, which play a role in the HIF-1 pathway. Here, we have extended this work to high- and low-altitude populations living in Ethiopia, for which we have measured hemoglobin levels. We genotyped the Illumina 1M SNP array and employed several genome-wide scans for selection and targeted association with hemoglobin levels to identify genes that play a role in adaptation to high altitude. RESULTS:We have identified a set of candidate genes for positive selection in our high-altitude population sample, demonstrated significantly different hemoglobin levels between high- and low-altitude Ethiopians and have identified a subset of candidate genes for selection, several of which also show suggestive associations with hemoglobin levels. CONCLUSIONS:We highlight several candidate genes for involvement in high-altitude adaptation in Ethiopia, including CBARA1, VAV3, ARNT2 and THRB. Although most of these genes have not been identified in previous studies of high-altitude Tibetan or Andean population samples, two of these genes (THRB and ARNT2) play a role in the HIF-1 pathway, a pathway implicated in previous work reported in Tibetan and Andean studies. These combined results suggest that adaptation to high altitude arose independently due to convergent evolution in high-altitude Amhara populations in Ethiopia.

SUBMITTER: Scheinfeldt LB 

PROVIDER: S-EPMC3334582 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>Genomic analysis of high-altitude populations residing in the Andes and Tibet has revealed several candidate loci for involvement in high-altitude adaptation, a subset of which have also been shown to be associated with hemoglobin levels, including EPAS1, EGLN1, and PPARA, which play a role in the HIF-1 pathway. Here, we have extended this work to high- and low-altitude populations living in Ethiopia, for which we have measured hemoglobin levels. We genotyped the Illumina 1M S  ...[more]

Similar Datasets

| S-EPMC3708501 | biostudies-literature
| S-EPMC9780680 | biostudies-literature
2014-02-20 | E-GEOD-55175 | biostudies-arrayexpress
| S-EPMC5792094 | biostudies-other
| S-EPMC5402460 | biostudies-literature
| S-EPMC4473257 | biostudies-literature
2014-02-20 | GSE55175 | GEO
| S-EPMC5241213 | biostudies-literature
2016-11-08 | GSE89635 | GEO
| S-EPMC5048413 | biostudies-literature