Unknown

Dataset Information

0

Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA.


ABSTRACT: BACKGROUND:Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII) gene. METHODS:Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. RESULTS:A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP) in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. CONCLUSIONS:The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be confirmed and its epidemiological significance further investigated. The lack of genetic population structure in the other north-east Indian populations likely reflects large population sizes of An. baimaii that, historically, were able to disperse through continuous forest habitats in the north-east India. Additional markers and analytical approaches are required to determine if recent deforestation is now preventing ongoing gene flow. Until such information is acquired, An. baimaii in north-east India should be treated as a single unit for the implementation of vector control measures.

SUBMITTER: Sarma DK 

PROVIDER: S-EPMC3337289 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA.

Sarma Devojit K DK   Prakash Anil A   O'Loughlin Samantha M SM   Bhattacharyya Dibya R DR   Mohapatra Pradumnya K PK   Bhattacharjee Kanta K   Das Kanika K   Singh Sweta S   Sarma Nilanju P NP   Ahmed Gias U GU   Walton Catherine C   Mahanta Jagadish J  

Malaria journal 20120320


<h4>Background</h4>Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII) gene.<h4>Methods</h4>Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states  ...[more]

Similar Datasets

| S-EPMC8474755 | biostudies-literature
| S-EPMC2898787 | biostudies-literature
| S-EPMC6053832 | biostudies-literature
| S-EPMC7666406 | biostudies-literature
| S-EPMC3533957 | biostudies-literature
| S-EPMC3183880 | biostudies-literature
| S-EPMC4334843 | biostudies-literature
| S-EPMC8185951 | biostudies-literature
| S-EPMC4082164 | biostudies-literature
| S-EPMC4059831 | biostudies-other