Project description:Eight genomes of avian polyomaviruses (APVs) were recovered and sequenced from deceased Psittacula eupatria, Psittacula krameri, and Melopsittacus undulatus from various breeding facilities in Poland. Of these APV-positive samples, six had previously tested positive for beak and feather disease virus (BFDV) and/or parrot hepatitis B virus (PHBV).
Project description:Avian bornaviruses (ABV), representing a new genus within the family Bornaviridae, were recently discovered in parrots from North America and Israel with proventricular dilatation disease (PDD). We show here that closely related viruses are also present in captive European parrots of various species with PDD. The six ABV strains that we identified in clinically diseased birds are new members of the previously defined ABV genotypes 2 and 4. Viruses of both genotypes readily established persistent, noncytolytic infections in quail and chicken cell lines but did not grow in cultured mammalian cells in which classical Borna disease virus strains replicate very efficiently. ABV antigens were present in both the cytoplasm and nucleus of infected cells, suggesting nuclear replication of ABV. The genome organization of avian and mammalian bornaviruses is highly conserved except that ABV lacks a distinct control element in the 5' noncoding region of the bicistronic mRNA encoding the viral proteins X and P. Reverse transcription-PCR analysis demonstrated the presence of virus in many, if not all, organs of birds with PDD. Viral nucleic acid was also found in feces of diseased birds, suggesting virus transmission by the fecal-oronasal route. Immunohistochemical analysis of organs from birds with PDD revealed that infection with ABV is not restricted to cells of the nervous system. Thus, ABV exhibits a broad tissue and cell tropism that is strikingly different from classical Borna disease virus.
Project description:Human adenovirus (HAdV) serotype 14 is rarely identified. However, an emerging variant, termed HAdV-14p1, recently has been described in the United States in association with outbreaks of acute respiratory disease with high rates of illness and death. We retrospectively analyzed specimens confirmed positive for HAdV by immunofluorescence, virus culture, or real-time PCR during July 1, 2009-July 31, 2010, and describe 9 cases of HAdV-14p1 infection with characteristic mutations in the fiber and E1A genes that are phylogenetically indistinguishable from the viruses previously detected in the United States. Three patients died; 2 were immunocompromised, and 1 was an immunocompetent adult. We propose that surveillance should be increased for HAdV-14p1 and recommend that this virus be considered in the differential diagnosis of sudden-onset acute respiratory disease, particularly fatal infections, for which an etiology is not clear.
Project description:Background and aimAvian coronavirus has a wide range of hosts, from chickens and turkeys to wild birds. This virus causes an economically and, possibly, environmentally, important loss in the poultry industry. Therefore, research into the avian coronavirus in various species of birds is required. The Eclectus parrot (Eclectus roratus) is an endemic bird to Indonesia and Northern Australia and often kept as pets. At present, there has been limited information about avian coronavirus infection among birds. This study aimed to determine the presence of and to characterize avian coronavirus isolated from Eclectus parrots in Indonesia.Materials and methodsCloacal swab samples were taken from 10 healthy Eclectus parrots (E. roratus). Each isolate was propagated into specific pathogen-free embryonated chicken eggs. The presence of avian coronavirus was determined using three sets of primers targeting the 3' untranslated region (3'-UTR) of avian coronavirus (UTR41+/11-), the N gene of the infectious bronchitis virus (IBVN+/-), and the S1 gene of the IBV (XCE2+/XCE2-). The infectious bronchitis vaccine strain H120 was used as a positive control. Resulting positive bands were sequenced for the S1 gene.ResultsNone of the isolates was positive for the 3'-UTR, four isolates were positive for the N gene of infectious bronchitis, and two isolates were positive for the S1 gene of the IBV. However, only one isolate (parrot/Indonesia/BX9/16) was sequenced for the partial S1 gene with primers XCE2+/XCE2-. The partial nucleotide sequence of this isolate showed 100% homology with the IBV GI-13 lineage, specifically with a field isolate of the 4/91 variant 1 Israel and the 4/91 vaccine on the hypervariable region 3 site of the S1 gene.ConclusionAn IB-like avian coronavirus was isolated from healthy Eclectus parrots. Our results indicate that IBV has a wide range of hosts, which prompt the need to understand the interspecies connection of this virus better.
Project description:Proventricular dilatation disease (PDD) is a fatal infectious disease of birds that primarily affects psittacine birds. Although a causative agent has not been formally demonstrated, the leading candidate is a novel avian bornavirus (ABV) detected in post-mortem tissue samples of psittacids with PDD from the USA, Israel and, recently, Germany. Here we describe the presence of ABV in a parrot with PDD as well as in clinically normal birds exposed to birds with PDD. In two ABV-positive post-mortem cases, the tissue distribution of ABV was investigated by quantitative real-time reverse transcription-polymerase chain reaction. Viraemia was observed in a PDD-affected bird whereas a restriction of ABV to nerve tissue was found in the non-PDD-affected bird. Healthy birds from the same aviary as the affected birds were also found to harbour the virus; 19/59 (32.2%) birds tested positive for ABV RNA in cloacal swabs, providing the first evidence of ABV in clinically healthy birds. In contrast, 39 birds from the same geographic area, but from two different aviaries without PDD cases in recent years, had negative cloacal swabs. ABV RNA-positive, clinically healthy birds demonstrated the same serological response as the animal with confirmed PDD. These results indicate that ABV infection may occur without clinical evidence of PDD and suggest that cloacal swabs can enable the non-invasive detection of ABV infection.
Project description:BACKGROUND:Malaria parasites (genus Plasmodium) are widespread in birds. These pathogens cause pathology of blood and various organs, often resulting in severe avian malaria. Numerous recent studies have reported DNA sequences of avian malaria parasites, indicating rich genetic diversity and the possible existence of many undescribed species. However, the majority of reported Plasmodium lineages remain unidentified to species level, and molecular characterization is unavailable for the majority of described Plasmodium parasites. During the past 15 years, numerous new Plasmodium species have been described. However, keys for their identification are unavailable or incomplete. Identification of avian malaria parasites remains a difficult task even for experts, and this precludes development of avian malariology, particularly in wildlife. Here, keys for avian malaria parasites have been developed as a baseline for assisting academic and veterinary medicine researchers in identification of these pathogens. The main obstacles and future research priorities have been defined in the taxonomy of avian Plasmodium species. METHODS:The data were considered from published articles and type and voucher material, which was accessed in museums in Europe, the USA and Australia. Blood films containing various blood stages of the majority of described species were examined and used for the development of dichotomous keys for avian Plasmodium species. RESULTS:In all, 164 published articles were included in this review. Blood stages of avian Plasmodium parasites belonging to subgenera Haemamoeba, Giovannolaia, Novyella, Bennettinia and Huffia were analysed and compared. Illustrated keys for identification of subgenera and species of these parasites were developed. Lists of invalid and synonymous Plasmodium parasite names as well as names of doubtful identity were composed. CONCLUSION:This study shows that 55 described species of avian Plasmodium can be readily identified using morphological features of their blood stages. These were incorporated in the keys. Numerous synonymous names of Plasmodium species and also the names belonging to the category species inquirenda exist, and they can be used as reserves for future taxonomy studies. Molecular markers are unavailable for 58% of described Plasmodium parasites, raising a task for the current avian malaria researchers to fill up this gap.
Project description:The geographic distribution of genetic diversity in malaria parasite populations (Apicomplexa: Haemosporida) presumably influences local patterns of virulence and the evolution of host-resistance, but little is known about population genetic structure in these parasites. We assess the distribution of genetic diversity in the partial Domain I of apical membrane antigen 1 (AMA1) in three mtDNA-defined lineages of avian Plasmodium to determine spatial population structure and host-parasite genetic relationships. We find that one parasite lineage is genetically differentiated in association with a single host genus and among some locations, but not with respect to other hosts. Two other parasite lineages are undifferentiated with respect to host species but exhibit geographic differentiation that is inconsistent with shared geographic barriers or with isolation-by-distance. Additional differentiation within two other lineages is unassociated with host species or location; in one case, we tentatively interpret this differentiation as the result of mitochondrial introgression from one of the lineages into a second lineage. More sampling of nuclear genetic diversity within populations of avian Plasmodium is needed to rule out coinfection as a possible confounding factor. If coinfections are not responsible for these findings, further assessment is needed to determine the frequency of mitonuclear discordance and its implications for defining parasite lineages based on mitochondrial genetic variation.Open research badgesThis article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at Genbank https://www.ncbi.nlm.nih.gov/genbank/, accession numbers MK965548-MK965653 and MK929797-MK930264.
Project description:The first two European outbreaks of herpetic pneumonia caused by Psittacid alphaherpesvirus-5 were diagnosed based on gross pathology findings, histological examination, transmission electron microscopy visualization and genome sequencing. The outbreaks, characterized by high morbidity and high mortality rates, involved two parrot species, namely the Indian ringneck parrot (Psittacula krameri) and the Alexandrine parakeet (Psittacula eupatria). Clinical signs observed were ruffled feathers, dyspnea, tail bobbing, open wings while breathing, depression and anorexia. Necropsy was performed on Indian ringneck parrots only, and the most evident and serious gross lesion found in all the birds was a diffuse marked consolidation of the lungs associated with parenchyma congestion and oedema. Histological examination confirmed the existence of bronchopneumonia characterized by the presence of syncytial cells with intranuclear inclusion bodies. In one bird, fibrinous airsacculitis was observed as well. Lung tissue inspection through electron microscopy revealed the presence of virus particles resembling herpesviruses. Viral DNA was extracted, amplified using primers for Alloherpesviridae DNA polymerase gene detection, and then sequenced. BLAST analysis showed a 100% identity with the only previously reported sequence of PsHV-5 (MK955929.1).