Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study.
Ontology highlight
ABSTRACT: The universal presence of a gene (SMN2) nearly identical to the mutated SMN1 gene responsible for Spinal Muscular Atrophy (SMA) has proved an enticing incentive to therapeutics development. Early disappointments from putative SMN-enhancing agent clinical trials have increased interest in improving the assessment of SMN expression in blood as an early "biomarker" of treatment effect.A cross-sectional, single visit, multi-center design assessed SMN transcript and protein in 108 SMA and 22 age and gender-matched healthy control subjects, while motor function was assessed by the Modified Hammersmith Functional Motor Scale (MHFMS). Enrollment selectively targeted a broad range of SMA subjects that would permit maximum power to distinguish the relative influence of SMN2 copy number, SMA type, present motor function, and age.SMN2 copy number and levels of full-length SMN2 transcripts correlated with SMA type, and like SMN protein levels, were lower in SMA subjects compared to controls. No measure of SMN expression correlated strongly with MHFMS. A key finding is that SMN2 copy number, levels of transcript and protein showed no correlation with each other.This is a prospective study that uses the most advanced techniques of SMN transcript and protein measurement in a large selectively-recruited cohort of individuals with SMA. There is a relationship between measures of SMN expression in blood and SMA type, but not a strong correlation to motor function as measured by the MHFMS. Low SMN transcript and protein levels in the SMA subjects relative to controls suggest that these measures of SMN in accessible tissues may be amenable to an "early look" for target engagement in clinical trials of putative SMN-enhancing agents. Full length SMN transcript abundance may provide insight into the molecular mechanism of phenotypic variation as a function of SMN2 copy number.Clinicaltrials.gov NCT00756821.
<h4>Background</h4>The universal presence of a gene (SMN2) nearly identical to the mutated SMN1 gene responsible for Spinal Muscular Atrophy (SMA) has proved an enticing incentive to therapeutics development. Early disappointments from putative SMN-enhancing agent clinical trials have increased interest in improving the assessment of SMN expression in blood as an early "biomarker" of treatment effect.<h4>Methods</h4>A cross-sectional, single visit, multi-center design assessed SMN transcript and ...[more]
Project description:The neuromuscular disorder spinal muscular atrophy (SMA), the most common inherited killer of infants, is caused by insufficient expression of survival motor neuron (SMN) protein. SMA therapeutics development efforts have focused on identifying strategies to increase SMN expression. We identified a long non-coding RNA (lncRNA) that arises from the antisense strand of SMN, SMN-AS1, which is enriched in neurons and transcriptionally represses SMN expression by recruiting the epigenetic Polycomb repressive complex-2. Targeted degradation of SMN-AS1 with antisense oligonucleotides (ASOs) increases SMN expression in patient-derived cells, cultured neurons, and the mouse central nervous system. SMN-AS1 ASOs delivered together with SMN2 splice-switching oligonucleotides additively increase SMN expression and improve survival of severe SMA mice. This study is the first proof of concept that targeting a lncRNA to transcriptionally activate SMN2 can be combined with SMN2 splicing modification to ameliorate SMA and demonstrates the promise of combinatorial ASOs for the treatment of neurogenetic disorders.
Project description:Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons and muscle atrophy, generally presenting in childhood. SMA is caused by low levels of the survival motor neuron protein (SMN) due to inactivating mutations in the encoding gene SMN1 A second duplicated gene, SMN2, produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in clinical trials, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. However, several factors suggest that complementary strategies may be needed for the long-term maintenance of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that the requirement for SMN protein is highest when the structural connections of the neuromuscular system are being established, from late fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying progressive functional decline beyond childhood in less severe types of SMA. Furthermore, individuals receiving SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is incomplete. Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion in gene therapy and ASO clinical trials, and may not benefit from SMN-inducing treatments. Therefore, a comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA drug discovery.
Project description:Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disease characterized by defects of lower motor neurons. Approximately 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) gene deletion, while ~5% carry an intragenic SMN1 mutation. Here, we investigated the stability and oligomerization ability of mutated SMN1 proteins. Plasmids containing wild- and mutant-type SMN1 cDNA were constructed and transfected into HeLa cells. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar abundances of transcripts from the plasmids containing SMN cDNA, but Western blotting showed different expression levels of mutated SMN1 proteins, reflecting the degree of their instability. A mutated SMN1 protein with T274YfsX32 exhibited a much lower expression level than other mutated SMN1 proteins with E134K, Y276H, or Y277C. In immunoprecipitation analysis, the mutated SMN1 protein with T274YfsX32 did not bind to endogenous SMN1 protein in HeLa cells, suggesting that this mutation completely blocks the oligomerization with full-length SMN2 protein in the patient. The patient with T274YfsX32 showed a much more severe phenotype than the other patients with different mutations. In conclusion, the stability and oligomerization ability of mutated SMN1 protein may determine the protein stability and may be associated with the clinical severity of SMA caused by intragenic SMN1 mutation.
Project description:Beyond motor neuron degeneration, homozygous mutations in the survival motor neuron 1 (SMN1) gene cause multiorgan and metabolic defects in patients with spinal muscular atrophy (SMA). However, the precise biochemical features of these alterations and the age of onset in the brain and peripheral organs remain unclear. Using untargeted NMR-based metabolomics in SMA mice, we identify cerebral and hepatic abnormalities related to energy homeostasis pathways and amino acid metabolism, emerging already at postnatal day 3 (P3) in the liver. Through HPLC, we find that SMN deficiency induces a drop in cerebral norepinephrine levels in overt symptomatic SMA mice at P11, affecting the mRNA and protein expression of key genes regulating monoamine metabolism, including aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DβH) and monoamine oxidase A (MAO-A). In support of the translational value of our preclinical observations, we also discovered that SMN upregulation increases cerebrospinal fluid norepinephrine concentration in Nusinersen-treated SMA1 patients. Our findings highlight a previously unrecognized harmful influence of low SMN levels on the expression of critical enzymes involved in monoamine metabolism, suggesting that SMN-inducing therapies may modulate catecholamine neurotransmission. These results may also be relevant for setting therapeutic approaches to counteract peripheral metabolic defects in SMA.
Project description:Background: Spinal and bulbar muscular atrophy (SBMA) or Kennedy disease [OMIM: 313200] is a rare X-linked neuromuscular disease. Patients commonly present with muscle cramps, tremors, leg weakness, dysarthria and dysphagia. Methods: We deeply phenotyped and evaluated the possible extent of affected systems in all patients with SBMA in Latvia (n = 5). In addition, neurophysiological studies and blood analyses were used to perform a molecular diagnosis and evaluate biochemical values. We analyzed neurofilament light (NfL) as a possible biomarker. Results: Neurological examination revealed typical SBMA clinical manifestations; all patients had small or large nerve fiber neuropathy. Three of five patients had increased neurofilament light levels. Conclusion: The study confirms the systemic involvement in patients suffering from SBMA. Increased NfL concentration was associated with either peripheral neuropathy or decreased body mass index. The complex phenotype of the disease should be kept in mind, as it could help to diagnose patients with SBMA.
Project description:Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). In humans, a nearly identical copy gene is present, SMN2. SMN2 is retained in all SMA patients and encodes the same protein as SMN1. However, SMN1 and SMN2 differ by a silent C-to-T transition at the 5' end of exon 7, causing alternative splicing of SMN2 transcripts and low levels of full-length SMN. SMA is monogenic and therefore well suited for gene-replacement strategies. Recently, self-complementary adeno-associated virus (scAAV) vectors have been used to deliver the SMN cDNA to an animal model of disease, the SMN?7 mouse. In this study, we examine a severe model of SMA, Smn(-/-);SMN2(+/+), to determine whether gene replacement is viable in a model in which disease development begins in utero. Using two delivery paradigms, intracerebroventricular injections and intravenous injections, we delivered scAAV9-SMN and demonstrated a two to four fold increase in survival, in addition to improving many of the phenotypic parameters of the model. This represents the longest extension in survival for this severe model for any therapeutic intervention and suggests that postsymptomatic treatment of SMA may lead to significant improvement of disease severity.
Project description:Spinal muscular atrophy (SMA), a degenerative motor neuron (MN) disease, caused by loss of functional survival of motor neuron (SMN) protein due to SMN1 gene mutations, is a leading cause of infant mortality. Increasing SMN levels ameliorates the disease phenotype and is unanimously accepted as a therapeutic approach for patients with SMA. The ubiquitin/proteasome system is known to regulate SMN protein levels; however, whether autophagy controls SMN levels remains poorly explored. Here, we show that SMN protein is degraded by autophagy. Pharmacological and genetic inhibition of autophagy increases SMN levels, while induction of autophagy decreases these levels. SMN degradation occurs via its interaction with the autophagy adapter p62 (also known as SQSTM1). We also show that SMA neurons display reduced autophagosome clearance, increased p62 and ubiquitinated proteins levels, and hyperactivated mTORC1 signaling. Importantly, reducing p62 levels markedly increases SMN and its binding partner gemin2, promotes MN survival, and extends lifespan in fly and mouse SMA models, revealing p62 as a potential new therapeutic target for the treatment of SMA.
Project description:Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.
Project description:BackgroundSpinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease that results in loss of spinal motor neurons, muscular weakness and, in severe cases, respiratory failure and death. SMA is caused by a deletion or mutation of the SMN1 gene and retention of the SMN2 gene that leads to low SMN expression levels.The measurement of SMN mRNA levels in peripheral blood samples has been used in SMA clinical studies as a pharmacodynamic biomarker for response to therapies designed to increase SMN levels. We recently developed a postnatal porcine model of SMA by the viral delivery of a short-hairpin RNA (shRNA) targeting porcine SMN (pSMN). scAAV9-mediated knockdown of pSMN mRNA at postnatal day 5 results in denervation, weakness and motor neuron and ventral root axon loss that begins 3-4 weeks after viral delivery, and this phenotype can be ameliorated by subsequent viral delivery of human SMN (hSMN).ObjectiveTo determine if the effect of modulating SMN levels using gene therapy can be measured in blood.MethodsWe measured expression of pSMN mRNA and hSMN mRNA by quantitative droplet digital PCR (ddPCR).ResultsWe found that the endogenous expression of pSMN mRNA in blood increases in the first month of life. However, there were no significant differences in blood levels of pSMN mRNA after knock-down or of human SMN mRNA after gene therapy.ConclusionsOur results, obtained in a large animal model of SMA that is similar in size and anatomy to human infants, suggest that measurement of SMN mRNA levels in blood may not be informative in SMA clinical trials involving intrathecal delivery of SMN-modulating therapies.