Project description:Background and purposeBrain edema is an important underlying pathology in acute stroke, especially when comorbidities are present. VEGF (Vascular endothelial growth factor) signaling is implicated in edema. This study investigated whether obesity impacts VEGF signaling and brain edema, as well as whether VEGF inhibition alters stroke outcome in obese subjects.MethodsHigh-fat diet-induced obese mice were subjected to a transient middle cerebral artery occlusion. VEGF-A and VEGFR2 (receptor) expression, infarct volume, and swelling were measured 3 days post-middle cerebral artery occlusion. To validate the effect of an anti-VEGF strategy, we used aflibercept, a fusion protein that has a VEGF-binding domain and acts as a decoy receptor, in human umbilical vein endothelial cells stimulated with rVEGF (recombinant VEGF; 50 ng/mL) for permeability and tube formation. In vivo, aflibercept (10 mg/kg) or IgG control was administered in obese mice 3 hours after transient 30 minutes middle cerebral artery occlusion. Blood-brain barrier integrity was assessed by IgG staining and dextran extravasation in the postischemic brain. A separate cohort of nonobese (lean) mice was subjected to 40 minutes middle cerebral artery occlusion to test the effect of aflibercept on malignant infarction.ResultsCompared with lean mice, obese mice had increased mortality, infarct volume, swelling, and blood-brain barrier disruption. These outcomes were also associated with increased VEGF-A and VEGFR2 expression. Aflibercept reduced VEGF-A-stimulated permeability and tube formation in human umbilical vein endothelial cells. Compared with the IgG-treated controls, mice treated with aflibercept had reduced mortality rates (40% versus 17%), hemorrhagic transformation (43% versus 27%), and brain swelling (28% versus 18%), although the infarct size was similar. In nonobese mice with large stroke, aflibercept neither improved nor exacerbated stroke outcomes.ConclusionsThe study demonstrates that aflibercept selectively attenuates stroke-induced brain edema and vascular permeability in obese mice. These findings suggest the repurposing of aflibercept to reduce obesity-enhanced brain edema in acute stroke.
Project description:We present here a label-free microarray-based assay platform that we used to identify inhibitors of vascular endothelial growth factor (VEGF)-kinase-insertion domain receptor (KDR) binding. Supported by a combination of special ellipsometry-based optical detection and small molecule microarrays (SMM), this platform consists of three assays: (1) the first assay detects binding of a target protein with SMM and identifies ligands to the protein as inhibitor candidates; (2) the second assay detects binding of a receptor protein with identical SMM and subsequent binding of the target protein (a sandwich assay) to identify the ligands to the receptor protein that do not interfere with the target-receptor binding; (3) the third assay detects binding of the target protein to the receptor protein in the presence of the ligands of the target protein identified from the first assay, with the receptor protein immobilized to a solid surface through the ligands identified in the second assay, to yield dose-response curves. Using this platform, we screened 7,961 compounds from the National Cancer Institute and found 12 inhibitors to VEGF-KDR (VEGFR2) interactions with IC₅₀ ranging from 0.3 to 60 μM. The inhibitory potency of these inhibitors found in the microarray-based assay was confirmed by their inhibition of VEGF-induced VEGFR2 phosphorylation in a cell-based assay.
Project description:To assess the interaction between ranibizumab, aflibercept, and mouse vascular endothelial growth factor (VEGF), both in vivo and in vitro. In vivo, the effect of intravitreal injection of ranibizumab and aflibercept on oxygen induced retinopathy (OIR) and the effect of multiple intraperitoneal injections of ranibizumab and aflibercept on neonatal mice were assessed. In vitro, the interaction of mouse VEGF-A with aflibercept or ranibizumab as the primary antibody was analyzed by Western blot. In both experiments using intravitreal injections in OIR mice and multiple intraperitoneal injections in neonatal mice, anti-VEGF effects were observed with aflibercept, but not with ranibizumab. Western blot analysis showed immunoreactive bands for mouse VEGF-A in the aflibercept-probed blot, but not in the ranibizumab-probed blot. Aflibercept but not ranibizumab interacts with mouse VEGF, both in vivo and in vitro. When conducting experiments using anti-VEGF drugs in mice, aflibercept is suitable, but ranibizumab is not.
Project description:This is a phase 3, randomized, double-blind, placebo-controlled multi-center study evaluating the efficacy of pegfilgrastim to reduce the incidence of febrile neutropenia (FN) in patients with newly diagnosed, locally-advanced or metastatic colorectal cancer receiving first-line treatment with bevacizumab and either 5-fluorouracil, Oxaliplatin, Leucovorin (FOLFOX) or 5-fluorouracil, Irinotecan, Leucovorin (FOLFIRI).
This study will also investigate the effect of adding pegfilgrastim to bevacizumab and either FOLFOX or FOLFIRI by evaluating overall survival, progression-free survival, and overall response rate in each arm at regular intervals over a maximum of 60 months follow-up.
Project description:The purpose of this research is to determine whether the drug, Bevacizumab (a monoclonal anti VEGF-A antibody), which is approved to treat patients with metastatic colon cancer induces hyperprolactinemia (increased prolactin secretion) in humans with intact pituitary function. Past studies have shown Bevacizumab to shrink tumor size and also increase prolactin levels. The mechanism of the hyperprolactinemia might be inhibition of pituitary portal vein transport, suggesting that Bevacizumab induces prolactin secretion from normal lactotrophs in the pituitary gland.
Patients who have been treated with Bevacizumab for at least one month will be recruited to participate.
The subjects who are being treated with Bevacizumab by Dr. Stephen Wolin (a sub-investigator) will be screened by him for study eligibility. Dr. Wolin will approach eligible patients with all the information and background of the study and see if they have an interest in being consented.
If consented, there will be 2 blood draws for the research that is not part of their standard care in which 10 ml of blood is collected and prolactin, growth hormone, IGF-I, TSH, thyroxine, ACTH, and cortisol will be measured. One 5ml blood draw will occur before the administration of Bevacizumab and the second 5 ml blood draw will occur after the administration of the Bevacizumab. The investigators will then review the laboratory results. The blood tests are of the hormones of the pituitary gland to test pituitary function and see if there are any abnormalities with the secretions of the gland. Pituitary function abnormalities and hyperprolactinemia are diagnosed by looking at hormone levels in the blood and comparing them to the normal reference ranges.
This study will only involve 10 subjects and will be conducted entirely at Cedars-Sinai Medical Center.
Project description:Neuropilin-1 (Nrp1) is an essential receptor for angiogenesis that binds to VEGF-A. Nrp1 binds directly to VEGF-A with high affinity, but the nature of their selective binding has remained unclear. Nrp1 was initially reported to bind to the exon 7-encoded region of VEGF-A and function as an isoform-specific receptor for VEGF-A(164/165). Recent data have implicated exon 8-encoded residues, which are found in all proangiogenic VEGF-A isoforms, in Nrp binding. We have determined the crystal structure of the exon 7/8-encoded VEGF-A heparin binding domain in complex with the Nrp1-b1 domain. This structure clearly demonstrates that residues from both exons 7 and 8 physically contribute to Nrp1 binding. Using an in vitro binding assay, we have determined the relative contributions of exon 7- and 8-encoded residues. We demonstrate that the exon 8-encoded C-terminal arginine is essential for the interaction of VEGF-A with Nrp1 and mediates high affinity Nrp binding. Exon 7-encoded electronegative residues make additional interactions with the L1 loop of Nrp1. Although otherwise conserved, the primary sequences of Nrp1 and Nrp2 differ significantly in this region. We further show that VEGF-A(164) binds 50-fold more strongly to Nrp1 than Nrp2. Direct repulsion between the electronegative exon 7-encoded residues of the heparin binding domain and the electronegative L1 loop found only in Nrp2 is found to significantly contribute to the observed selectivity. The results reveal the basis for the potent and selective binding of VEGF-A(164) to Nrp1.
Project description:Interstitial lung disease (ILD) encompasses a group of heterogeneous diseases characterised by varying degrees of aberrant inflammation and fibrosis of the lung parenchyma. This may occur in isolation, such as in idiopathic pulmonary fibrosis (IPF) or as part of a wider disease process affecting multiple organs, such as in systemic sclerosis. Anti-Vascular Endothelial Growth Factor (anti-VEGF) therapy is one component of an existing broad-spectrum therapeutic option in IPF (nintedanib) and may become part of the emerging therapeutic strategy for other ILDs in the future. This article describes our current understanding of VEGF biology in normal lung homeostasis and how changes in its bioavailability may contribute the pathogenesis of ILD. The complexity of VEGF biology is particularly highlighted with an emphasis on the potential non-vascular, non-angiogenic roles for VEGF in the lung, in both health and disease.
Project description:Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis.
Project description:Tumors require blood supply and, to overcome this restriction, induce angiogenesis. Vascular endothelial growth factor (VEGF) plays an important role in this process, which explains the great number of antiangiogenic therapies targeting VEGF. The research and development of targeted therapy has led to the approval of bevacizumab, a humanized anti-VEGF monoclonal antibody (mAb), in clinical settings. However, side effects have been reported, usually as a consequence of bolus-dose administration of the antibody. This limitation could be circumvented through the use of anti-idiotype (Id) antibodies. In the present study, we evaluated the efficacy of an active VEGF-binding immune response generated by an anti-bevacizumab idiotype mAb, 10.D7. The 10.D7 anti-Id mAb vaccination led to detectable levels of VEGF-binding anti-anti-Id antibodies. In order to examine whether this humoral immune response could have implications for tumor development, 10.D7-immunized mice were challenged with B16-F10 tumor cells. Mice immunized with 10.D7 anti-Id mAb revealed reduced tumor growth when compared to control groups. Histological analyses of tumor sections from 10.D7-immunized mice showed increased necrotic areas, decreased CD31-positive vascular density and reduced CD68-positive cell infiltration. Our results encourage further therapeutic studies, particularly if one considers that the anti-Id therapeutic vaccination maintains stable levels of VEGF-binding antibodies, which might be useful in the control of tumor relapse.
Project description:This work was designed to determine the role of the vascular endothelial growth factor A (VEGF) isoforms during early neuroepithelial development in the mammalian central nervous system (CNS), specifically in the forebrain. An emerging model of interdependence between neural and vascular systems includes VEGF, with its dual roles as a potent angiogenesis factor and neural regulator. Although a number of studies have implicated VEGF in CNS development, little is known about the role that the different VEGF isoforms play in early neurogenesis. We used a mouse model of disrupted VEGF isoform expression that eliminates the predominant brain isoform, VEGF164, and expresses only the diffusible form, VEGF120. We tested the hypothesis that VEGF164 plays a key role in controlling neural precursor populations in developing cortex. We used microarray analysis to compare gene expression differences between wild type and VEGF120 mice at E9.5, the primitive stem cell stage of the neuroepithelium. We quantified changes in PHH3-positive nuclei, neural stem cell markers (Pax6 and nestin) and the Tbr2-positive intermediate progenitors at E11.5 when the neural precursor population is expanding rapidly. Absence of VEGF164 (and VEGF188) leads to reduced proliferation without an apparent effect on the number of Tbr2-positive cells. There is a corresponding reduction in the number of mitotic spindles that are oriented parallel to the ventricular surface relative to those with a vertical or oblique angle. These results support a role for the VEGF isoforms in supporting the neural precursor population of the early neuroepithelium.