Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene.
Ontology highlight
ABSTRACT: To evaluate macular cone structure in patients with X-linked retinoschisis (XLRS) caused by mutations in exon 6 of the RS1 gene.High-resolution macular images were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography (SD-OCT) in two patients with XLRS and 27 age-similar healthy subjects. Retinal structure was correlated with best-corrected visual acuity, kinetic and static perimetry, fundus-guided microperimetry, full-field electroretinography (ERG), and multifocal ERG. The six coding exons and the flanking intronic regions of the RS1 gene were sequenced in each patient.Two unrelated males, ages 14 and 29, with visual acuity ranging from 20/32 to 20/63, had macular schisis with small relative central scotomas in each eye. The mixed scotopic ERG b-wave was reduced more than the a-wave. SD-OCT showed schisis cavities in the outer and inner nuclear and plexiform layers. Cone spacing was increased within the largest foveal schisis cavities but was normal elsewhere. In each patient, a mutation in exon 6 of the RS1 gene was identified and was predicted to change the amino acid sequence in the discoidin domain of the retinoschisin protein.AOSLO images of two patients with molecularly characterized XLRS revealed increased cone spacing and abnormal packing in the macula of each patient, but cone coverage and function were near normal outside the central foveal schisis cavities. Although cone density is reduced, the preservation of wave-guiding cones at the fovea and eccentric macular regions has prognostic and therapeutic implications for XLRS patients with foveal schisis. (Clinical Trials.gov number, NCT00254605.).
SUBMITTER: Duncan JL
PROVIDER: S-EPMC3341122 | biostudies-literature | 2011 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA