Unknown

Dataset Information

0

Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation.


ABSTRACT: Hyperosmolar stress acts in two ways on the implanting embryo and its major constituent, placental trophoblast stem cells (TSC). Stress causes homeostasis that slows development with lesser cell accumulation, increased cell cycle arrest, and apoptosis. Stress may also cause placental differentiation at implantation. To test for the homeostatic and differentiation-inducing consequences of stress, TSC were exposed to hyperosmolar stress for 24 h and tested using whole mouse genome arrays and Real-time quantitative (Q)PCR. At 0.5 h, all 31 highly changing mRNA (>1.5-fold compared with unstressed TSC) decreased, but by 24 h 158/288 genes were upregulated. Many genes upregulated at 24 h were near baseline levels in unstressed TSC, suggesting new transcription. Thus few genes change during the early stress response, but by 24 h TSC have adapted to start new transcription with large gene sets. Types of genes upregulated at 24 h included homeostatic genes regulating growth and DNA damage induced (GADD45beta/gamma), activator protein (AP)-1 (junB/junC/ATF3/4), heat shock proteins (HSP22/68), and cyclin-dependent kinase inhibitor [CDKI; p15, p21]. But, stress also induced transcription factors that mediate TSC differentiation to trophoblast giant cells (TGC) (Stra13, HES1, GATA-binding2), placental hormones [proliferin, placental lactogen (PL)1, prolactin-like protein (PLP)M], and extracellular matrix genes (CCN1/2). Transcription factors for later placental cell lineages, spongiotrophoblast (MASH2, TPBPalpha) and syncytiotrophoblast (GCM1, TEF5) and placental hormones (PLPA, PLII) were not induced by 24 h stress. Thus stress induced the temporal and spatial placental differentiation normal after implantation. Although differentiation was induced, markers of TSC stemness such as inhibitor of differentiation (ID)2 remained at 100% of levels of unstressed TSC, suggesting that retained mRNA might mediate dedifferentiation were stress to subside.

SUBMITTER: Liu J 

PROVIDER: S-EPMC3343317 | biostudies-literature | 2009 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation.

Liu J J   Xu W W   Sun T T   Wang F F   Puscheck E E   Brigstock D D   Wang Q T QT   Davis R R   Rappolee D A DA  

Placenta 20081125 1


Hyperosmolar stress acts in two ways on the implanting embryo and its major constituent, placental trophoblast stem cells (TSC). Stress causes homeostasis that slows development with lesser cell accumulation, increased cell cycle arrest, and apoptosis. Stress may also cause placental differentiation at implantation. To test for the homeostatic and differentiation-inducing consequences of stress, TSC were exposed to hyperosmolar stress for 24 h and tested using whole mouse genome arrays and Real-  ...[more]

Similar Datasets

| S-EPMC6933824 | biostudies-literature
| S-EPMC4398769 | biostudies-literature
2008-11-04 | GSE9519 | GEO
2008-11-13 | E-GEOD-9519 | biostudies-arrayexpress
| S-EPMC9797987 | biostudies-literature
| S-EPMC8075731 | biostudies-literature
| S-EPMC2726840 | biostudies-literature
| S-EPMC4201296 | biostudies-other
| S-EPMC5805473 | biostudies-literature
| S-EPMC8559528 | biostudies-literature