Unknown

Dataset Information

0

Dopamine inhibits pulmonary edema through the VEGF-VEGFR2 axis in a murine model of acute lung injury.


ABSTRACT: The neurotransmitter dopamine and its dopamine receptor D2 (D2DR) agonists are known to inhibit vascular permeability factor/vascular endothelial growth factor (VEGF)-mediated angiogenesis and vascular permeability. Lung injury is a clinical syndrome associated with increased microvascular permeability. However, the effects of dopamine on pulmonary edema, a phenomenon critical to the pathophysiology of both acute and chronic lung injuries, have yet to be established. Therefore, we sought to determine the potential therapeutic effects of dopamine in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compared with sham-treated controls, pretreatment with dopamine (50 mg/kg body wt) ameliorated LPS-mediated edema formation and lowered myeloperoxidase activity, a measure of neutrophil infiltration. Moreover, dopamine significantly increased survival rates of LPS-treated mice, from 0-75%. Mechanistically, we found that dopamine acts through the VEGF-VEGFR2 axis to reduce pulmonary edema, as dopamine pretreatment in LPS-treated mice resulted in decreased serum VEGF, VEGFR2 phosphorylation, and endothelial nitric oxide synthase phosphorylation. We used D2DR knockout mice to confirm that dopamine acts through D2DR to block vascular permeability in our lung injury model. As expected, a D2DR agonist failed to reduce pulmonary edema in D2DR(-/-) mice. Taken together, our results suggest that dopamine acts through D2DR to inhibit pulmonary edema-associated vascular permeability, which is mediated through VEGF-VEGFR2 signaling and conveys protective effects in an ALI model.

SUBMITTER: Vohra PK 

PROVIDER: S-EPMC3349364 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dopamine inhibits pulmonary edema through the VEGF-VEGFR2 axis in a murine model of acute lung injury.

Vohra Pawan K PK   Hoeppner Luke H LH   Sagar Gunisha G   Dutta Shamit K SK   Misra Sanjay S   Hubmayr Rolf D RD   Mukhopadhyay Debabrata D  

American journal of physiology. Lung cellular and molecular physiology 20111014 2


The neurotransmitter dopamine and its dopamine receptor D2 (D2DR) agonists are known to inhibit vascular permeability factor/vascular endothelial growth factor (VEGF)-mediated angiogenesis and vascular permeability. Lung injury is a clinical syndrome associated with increased microvascular permeability. However, the effects of dopamine on pulmonary edema, a phenomenon critical to the pathophysiology of both acute and chronic lung injuries, have yet to be established. Therefore, we sought to dete  ...[more]

Similar Datasets

| S-EPMC2705690 | biostudies-literature
| S-EPMC5896544 | biostudies-literature
| S-EPMC7695853 | biostudies-literature
| S-EPMC4722629 | biostudies-other
| S-EPMC5828182 | biostudies-literature
| S-EPMC4068350 | biostudies-literature
| S-EPMC3613914 | biostudies-literature
| S-EPMC7393782 | biostudies-literature
| S-EPMC5719432 | biostudies-literature
| S-EPMC6336323 | biostudies-literature