Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants.
Ontology highlight
ABSTRACT: Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO₃⁻ accumulated more Cd than plants fed NH₄⁺. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO₃⁻. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO₃⁻ and NH₄⁺ treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO₃⁻-facilitated Cd accumulation in plants.
SUBMITTER: Luo BF
PROVIDER: S-EPMC3350926 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA