Unknown

Dataset Information

0

A metapopulation model for the introgression from genetically modified plants into their wild relatives.


ABSTRACT: Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative.

SUBMITTER: Meirmans PG 

PROVIDER: S-EPMC3352369 | biostudies-literature | 2009 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A metapopulation model for the introgression from genetically modified plants into their wild relatives.

Meirmans Patrick G PG   Bousquet Jean J   Isabel Nathalie N  

Evolutionary applications 20081128 2


Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgen  ...[more]

Similar Datasets

| S-EPMC3068944 | biostudies-literature
| S-EPMC7947771 | biostudies-literature
| S-EPMC5831112 | biostudies-literature
| S-EPMC7384481 | biostudies-literature
2012-03-21 | GSE30975 | GEO
| S-EPMC4020688 | biostudies-literature
| S-EPMC4504983 | biostudies-literature
| S-EPMC6381221 | biostudies-literature
2012-03-21 | E-GEOD-30975 | biostudies-arrayexpress
| S-EPMC10500775 | biostudies-literature