Functions of protosilencers in the formation and maintenance of heterochromatin in Saccharomyces cerevisiae.
Ontology highlight
ABSTRACT: In Saccharomyces cerevisiae, transcriptionally silent heterochromatin at HML and HMR loci is established by silencers that recruit SIR complex and promote its propagation along chromatin. Silencers consist of various combinations of two or three binding sites for origin recognition complex (ORC), Abf1 and Rap1. A single ORC, Abf1 or Rap1 site cannot promote silencing, but can enhance silencing by a distant silencer, and is called a protosilencer. The mechanism of protosilencer function is not known. We examine the functions of ORC, Abf1 and Rap1 sites as components of the HMR-E silencer, and as protosilencers. We find that the Rap1 site makes a larger and unique contribution to HMR-E function compared to ORC and Abf1 sites. On the other hand, Rap1 site does not act as a protosilencer to assist HML-E silencer in forming heterochromatin, whereas ORC and Abf1 sites do. Therefore, different mechanisms may be involved in the roles of Rap1 site as a component of HMR-E and as a protosilencer. Heterochromatin formed by ORC or Abf1 site in collaboration with HML-E is not as stable as that formed by HMR-E and HML-E, but increasing the copy number of Abf1 site enhances heterochromatin stability. ORC and Abf1 sites acting as protosilencers do not modulate chromatin structure in the absence of SIR complex, which argues against the hypothesis that protosilencers serve to create a chromatin structure favorable for SIR complex propagation. We also investigate the function of ARS1 containing an ORC site and an Abf1 site as a protosilencer. We find that ARS1 inserted at HML enhances heterochromatin stability, and promotes de novo formation of a chromatin structure that partially resembles heterochromatin in an S phase dependent manner. Taken together, our results indicate that protosilencers aid in the formation and maintenance of heterochromatin structure.
SUBMITTER: Zhang X
PROVIDER: S-EPMC3355138 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA