Unknown

Dataset Information

0

Transferring learning from external to internal weights in echo-state networks with sparse connectivity.


ABSTRACT: Modifying weights within a recurrent network to improve performance on a task has proven to be difficult. Echo-state networks in which modification is restricted to the weights of connections onto network outputs provide an easier alternative, but at the expense of modifying the typically sparse architecture of the network by including feedback from the output back into the network. We derive methods for using the values of the output weights from a trained echo-state network to set recurrent weights within the network. The result of this "transfer of learning" is a recurrent network that performs the task without requiring the output feedback present in the original network. We also discuss a hybrid version in which online learning is applied to both output and recurrent weights. Both approaches provide efficient ways of training recurrent networks to perform complex tasks. Through an analysis of the conditions required to make transfer of learning work, we define the concept of a "self-sensing" network state, and we compare and contrast this with compressed sensing.

SUBMITTER: Sussillo D 

PROVIDER: S-EPMC3360031 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transferring learning from external to internal weights in echo-state networks with sparse connectivity.

Sussillo David D   Abbott L F LF  

PloS one 20120524 5


Modifying weights within a recurrent network to improve performance on a task has proven to be difficult. Echo-state networks in which modification is restricted to the weights of connections onto network outputs provide an easier alternative, but at the expense of modifying the typically sparse architecture of the network by including feedback from the output back into the network. We derive methods for using the values of the output weights from a trained echo-state network to set recurrent we  ...[more]

Similar Datasets

| S-EPMC7452343 | biostudies-literature
| S-EPMC5039250 | biostudies-literature
| S-EPMC8827417 | biostudies-literature
| S-EPMC9110869 | biostudies-literature
| S-EPMC6413302 | biostudies-literature
| S-EPMC6283213 | biostudies-literature
| S-EPMC7640371 | biostudies-literature
| S-EPMC5568802 | biostudies-literature
| S-EPMC5070849 | biostudies-literature
| S-EPMC4262564 | biostudies-literature