Project description:The invasion of West Africa by Rhipicephalus microplus during the past decade has changed the ecological situation of the agent of heartwater Ehrlichia ruminantium in this area. Before, its local vector, Amblyomma variegatum, was the most abundant tick species found on livestock. Today, the abundance of the R. microplus is one magnitude higher than that of A. variegatum in many west-African localities. We investigated the potential of this new ecological situation to impact the circulation of E. ruminantium in West Africa.Ehrlichia ruminantium infections were assessed with the specific PCR-diagnosis targeting the PCS20 region. This screening was applied on field samples of 24 R. microplus adults, on four females from a laboratory strain that had been blood-fed since larvae on one E. ruminantium-infected steer as well as on the offspring of these females at egg and larval stages.The PCR detected E. ruminantium in 29 % of the field-collected R. microplus, i.e. twice as much as reported for A. variegatum with the same protocol. Regarding the laboratory strain, the PCR-diagnosis performed showed that all females were infected and passed the rickettsia to their progeny. Sequencing of the PCR product confirmed that the maternally inherited rickettsia was E. ruminantium.According to the present findings, the invasive dynamic of R. microplus in West Africa is currently impacting the local evolutionary conditions of E. ruminantium since it offers new transmission roads such as maternal transmission in R. microplus.
Project description:ObjectivesEhrlichia ruminantium infection (heartwater) is a major constraint that impacts negatively on the cattle industry development in sub-Saharan Africa and so far, little is known of the presence of heartwater in cattle in Cameroon. This study sought to investigate the prevalence of E. ruminantium infection in cattle in Cameroon and to determine the predictors of infection.ResultsA species-specific semi-nested pCS20 polymerase chain reaction was used to screen the buffy coats from 182 cattle (comprising 82 cattle that received intensive tick control regimen and 100 cattle on strategic tick control) from two study sites in Cameroon for E. ruminantium DNA in a cross-sectional study. E. ruminantium infection was confirmed in 12 (6.6%) of the 182 cattle comprising 11 that received intensive tick control and one on strategic tick control. Of the 12 cattle detected, 11 were apparently healthy and one was clinically diagnosed of heartwater. All DNA sequences of pCS20 amplicons were identical to each other (a representative sequence deposited in GenBank under accession number JQ039939). These findings which have veterinary and epidemiological significance, suggest the need for further investigation to determine the extent and role of heartwater in cattle in Cameroon.
Project description:Unraveling which proteins and post-translational modifications (PTMs) affect bacterial pathogenesis and physiology in diverse environments is a tough challenge. Herein, we used mass spectrometry-based assays to study protein phosphorylation and glycosylation in Ehrlichia ruminantium Gardel virulent (ERGvir) and attenuated (ERGatt) variants and, how they can modulate Ehrlichia biological processes. The characterization of the S/T/Y phosphoproteome revealed that both strains share the same set of phosphoproteins (n = 58), 36% being overexpressed in ERGvir. The percentage of tyrosine phosphorylation is high (23%) and 66% of the identified peptides are multi-phosphorylated. Glycoproteomics revealed a high percentage of glycoproteins (67% in ERGvir) with a subset of glycoproteins being specific to ERGvir (n = 64/371) and ERGatt (n = 36/343). These glycoproteins are involved in key biological processes such as protein, amino-acid and purine biosynthesis, translation, virulence, DNA repair, and replication. Label-free quantitative analysis revealed over-expression in 31 proteins in ERGvir and 8 in ERGatt. While further PNGase digestion confidently localized 2 and 5 N-glycoproteins in ERGvir and ERGatt, respectively, western blotting suggests that many glycoproteins are O-GlcNAcylated. Twenty-three proteins were detected in both the phospho- and glycoproteome, for the two variants. This work represents the first comprehensive assessment of PTMs on Ehrlichia biology, rising interesting questions regarding ER-host interactions. Phosphoproteome characterization demonstrates an increased versatility of ER phosphoproteins to participate in different mechanisms. The high number of glycoproteins and the lack of glycosyltransferases-coding genes highlight ER dependence on the host and/or vector cellular machinery for its own protein glycosylation. Moreover, these glycoproteins could be crucial to interact and respond to changes in ER environment. PTMs crosstalk between of O-GlcNAcylation and phosphorylation could be used as a major cellular signaling mechanism in ER. As little is known about the Ehrlichia proteins/proteome and its signaling biology, the results presented herein provide a useful resource for further hypothesis-driven exploration of Ehrlichia protein regulation by phosphorylation and glycosylation events. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD012589.
Project description:The obligate intracellular bacterium, Ehrlichia ruminantium (ER) is the causal agent of Heartwater, a fatal disease in ruminants. It is transmitted by ticks of the genus Amblyomma. Here, we report the genomic comparative and the global transcriptional profile of 4 strains of ER, Gardel and Senegal, two distant virulent strains with their corresponding attenuated strains. Our results showed a higher metabolic activity in attenuated strains compared to virulent strains, suggesting a better adaptation in vitro of attenuated strains to the host cells. There was a strong modification of membrane protein encoding genes expression for the 4 strains. A major over-expression of map1-related genes was observed for virulent strains, whereas attenuated strains over-expressed genes encoding for hypothetical membrane proteins. This result suggests that in vivo, MAP-1 related proteins could induce non-protective immune responses for virulent strains. For the attenuated strains, the lack of expression of map1-related genes and over-expression of other membrane proteins encoding genes could be important in induction of efficient immune responses.The diminution of expression of many genes in attenuated Senegal was caused by severe mutation. One of them, the gene recO is involved in DNA repair and its mutation could explain the higher proportion of mutated genes in attenuated Senegal, inducing the faster attenuation of Senegal compared to Gardel.
Project description:Ehrlichia ruminantium is the causal agent of heartwater, a fatal tropical disease affecting ruminants with important economic impacts. This bacterium is transmitted by Amblyomma ticks and is present in sub-Saharan Africa, islands in the Indian Ocean and the Caribbean, where it represents a threat to the American mainland.An automated DNA extraction method was adapted for Amblyomma ticks and a new qPCR targeting the pCS20 region was developed to improve E. ruminantium screening capacity and diagnosis. The first step in the preparation of tick samples, before extraction, was not automated but was considerably improved by using a Tissue Lyser. The new pCS20 Sol1 qPCR and a previously published pCS20 Cow qPCR were evaluated with the OIE standard pCS20 nested PCR.pCS20 Sol1 qPCR was found to be more specific than the nested PCR, with a 5-fold increase in sensitivity (3 copies/reaction vs 15 copies/reaction), was less prone to contamination and less time-consuming. As pCS20 Sol1 qPCR did not detect Rickettsia, Anasplasma and Babesia species or closely related species such as Panola Mountain Ehrlichia, E. chaffeensis and E. canis, its specificity was also better than Cow qPCR. In parallel, a tick 16S qPCR was developed for the quality control of DNA extraction that confirmed the good reproducibility of the automated extraction. The whole method, including the automated DNA extraction and pCS20 Sol1 qPCR, was shown to be sensitive, specific and highly reproducible with the same limit of detection as the combined manual DNA extraction and nested PCR, i.e. 6 copies/reaction. Finally, 96 samples can be tested in one day compared to the four days required for manual DNA extraction and nested PCR.The adaptation of an automated DNA extraction using a DNA/RNA viral extraction kit for tick samples and the development of a new qPCR increased the accuracy of E. ruminantium epidemiological studies, as well as the diagnostic capabilities and turn-over time for surveillance of heartwater. This new method paves the way for large-scale screening of other bacteria and viruses in ticks as well as genetic characterization of ticks and tick-pathogen coevolution studies.
Project description:Three isolates of Ehrlichia ruminantium (Kümm 2, Omatjenne and Riverside), the causative agent of heartwater in domestic ruminants, were isolated in Ixodes scapularis (IDE8) tick cell cultures using the leukocyte fraction of infected sheep blood. All stocks were successfully propagated in IDE8 cells, whereas initiation attempts using endothelial cell cultures were unsuccessful. Therefore, the new technique should be included in any attempt to isolate field strains of E. ruminantium to enhance the probability of getting E. ruminantium isolates which might not be initiated in endothelial cells. Draft genome sequences of all three isolates were generated and compared with published genomes. The data confirmed previous phylogenetic studies that these three isolates are genetically very close to each other, but distinct from previously characterised E. ruminantium isolates. Genome comparisons indicated that the gene content and genomic synteny were highly conserved, with the exception of the membrane protein families. These findings expand our understanding of the genetic diversity of E. ruminantium and confirm the distinct phenotypic and genetic characteristics shared by these three isolates.