Unknown

Dataset Information

0

Integrative approach to pain genetics identifies pain sensitivity loci across diseases.


ABSTRACT: Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P?=?1.3×10?¹?) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P?=?1.7×10??, 1.8×10??, and 2.2×10?? respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates.

SUBMITTER: Ruau D 

PROVIDER: S-EPMC3369906 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrative approach to pain genetics identifies pain sensitivity loci across diseases.

Ruau David D   Dudley Joel T JT   Chen Rong R   Phillips Nicholas G NG   Swan Gary E GE   Lazzeroni Laura C LC   Clark J David JD   Butte Atul J AJ   Angst Martin S MS  

PLoS computational biology 20120607 6


Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from M  ...[more]

Similar Datasets

| S-EPMC8521585 | biostudies-literature
| S-EPMC3843531 | biostudies-literature
| S-EPMC4941121 | biostudies-literature
2011-04-01 | GSE21562 | GEO
2011-04-01 | E-GEOD-21562 | biostudies-arrayexpress
| S-EPMC7566321 | biostudies-literature
| S-EPMC8804607 | biostudies-literature
| S-EPMC7820351 | biostudies-literature
| S-EPMC3837437 | biostudies-literature