Unknown

Dataset Information

0

Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis.


ABSTRACT: Aurachin RE (1) is a strong antibiotic that was recently found to possess 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) and bacterial electron transport inhibitory activities. Aurachin RE is the only molecule in a series of aurachin natural products that has the chiral center in the alkyl side chain at C9'-position. To identify selective MenA inhibitors against Mycobacterium tuberculosis , a series of chiral molecules were designed based on the structures of previously identified MenA inhibitors and 1. The synthesized molecules were evaluated in in vitro assays, including MenA enzyme and bacterial growth inhibitory assays. We could identify novel MenA inhibitors that showed significant increase in potency of killing nonreplicating M. tuberculosis in the low oxygen recovery assay (LORA) without inhibiting other Gram-positive bacterial growth even at high concentrations. The MenA inhibitors reported here are useful new pharmacophores for the development of selective antimycobacterial agents with strong activity against nonreplicating M. tuberculosis.

SUBMITTER: Debnath J 

PROVIDER: S-EPMC3375340 | biostudies-literature | 2012 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis.

Debnath Joy J   Siricilla Shajila S   Wan Bajoie B   Crick Dean C DC   Lenaerts Anne J AJ   Franzblau Scott G SG   Kurosu Michio M  

Journal of medicinal chemistry 20120406 8


Aurachin RE (1) is a strong antibiotic that was recently found to possess 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) and bacterial electron transport inhibitory activities. Aurachin RE is the only molecule in a series of aurachin natural products that has the chiral center in the alkyl side chain at C9'-position. To identify selective MenA inhibitors against Mycobacterium tuberculosis , a series of chiral molecules were designed based on the structures of previously identified MenA inhi  ...[more]

Similar Datasets

| S-EPMC5558544 | biostudies-other
| S-EPMC2801607 | biostudies-literature
| S-EPMC7086027 | biostudies-literature
| S-EPMC7091493 | biostudies-literature
| S-EPMC4362912 | biostudies-literature
| S-EPMC4667731 | biostudies-literature
| S-EPMC4383039 | biostudies-literature
| S-EPMC3639817 | biostudies-literature
| S-EPMC3259734 | biostudies-literature
| S-EPMC3268331 | biostudies-literature