Generalized linear mixed models for mapping multiple quantitative trait loci.
Ontology highlight
ABSTRACT: Many biological traits are discretely distributed in phenotype but continuously distributed in genetics because they are controlled by multiple genes and environmental variants. Due to the quantitative nature of the genetic background, these multiple genes are called quantitative trait loci (QTL). When the QTL effects are treated as random, they can be estimated in a single generalized linear mixed model (GLMM), even if the number of QTL may be larger than the sample size. The GLMM in its original form cannot be applied to QTL mapping for discrete traits if there are missing genotypes. We examined two alternative missing genotype-handling methods: the expectation method and the overdispersion method. Simulation studies show that the two methods are efficient for multiple QTL mapping (MQM) under the GLMM framework. The overdispersion method showed slight advantages over the expectation method in terms of smaller mean-squared errors of the estimated QTL effects. The two methods of GLMM were applied to MQM for the female fertility trait of wheat. Multiple QTL were detected to control the variation of the number of seeded spikelets.
SUBMITTER: Che X
PROVIDER: S-EPMC3375403 | biostudies-literature | 2012 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA