Unknown

Dataset Information

0

Convergence of genetic influences in comorbidity.


ABSTRACT: Predisposition to complex diseases is explained in part by genetic variation, and complex diseases are frequently comorbid, consistent with pleiotropic genetic variation influencing comorbidity. Genome Wide Association (GWA) studies typically assess association between SNPs and a single-disease phenotype. Fisher meta-analysis combines evidence of association from single-disease GWA studies, assuming that each study is an independent test of the same hypothesis. The Rank Product (RP) method overcomes limitations posed by Fisher assumptions, though RP was not designed for GWA data.We modified RP to accommodate GWA data, and we call it modRP. Using p-values output from GWA studies, we aggregate evidence for association between SNPs and related phenotypes. To assess significance, RP randomly samples the observed ranks to develop the null distribution of the RP statistic, and then places the observed RPs into the null distribution. ModRP eliminates the effect of linkage disequilibrium and controls for differences in power at tested SNPs, to meet RP assumptions in application to GWA data.After validating modRP based on both positive and negative control studies, we searched for pleiotropic influences on comorbid substance use disorders in a novel study, and found two SNPs to be significantly associated with comorbid cocaine, opium, and nicotine dependence. Placing these SNPs into biological context, we developed a protein network modeling the interaction of cocaine, nicotine, and opium with these variants.ModRP is a novel approach to identifying pleiotropic genetic influences on comorbid complex diseases. It can be used to assess association for related phenotypes where raw data is unavailable or inappropriate for analysis using other approaches. The method is conceptually simple and produces statistically significant, biologically relevant results.

SUBMITTER: McEachin RC 

PROVIDER: S-EPMC3375629 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Convergence of genetic influences in comorbidity.

McEachin Richard C RC   Sannareddy Keerthi S KS   Cavalcoli James D JD   Karnovsky Alla A   Vink Jacqueline M JM   Sartor Maureen A MA  

BMC bioinformatics 20120313


<h4>Background</h4>Predisposition to complex diseases is explained in part by genetic variation, and complex diseases are frequently comorbid, consistent with pleiotropic genetic variation influencing comorbidity. Genome Wide Association (GWA) studies typically assess association between SNPs and a single-disease phenotype. Fisher meta-analysis combines evidence of association from single-disease GWA studies, assuming that each study is an independent test of the same hypothesis. The Rank Produc  ...[more]

Similar Datasets

| S-EPMC2730957 | biostudies-literature
| S-EPMC2888715 | biostudies-literature
| S-EPMC9649437 | biostudies-literature
| S-EPMC5679730 | biostudies-literature
| S-EPMC7445247 | biostudies-literature
| S-EPMC6832188 | biostudies-literature
| S-EPMC9633357 | biostudies-literature
| S-EPMC7140889 | biostudies-literature
| S-EPMC5524755 | biostudies-literature
| S-EPMC5183514 | biostudies-literature