Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells.
Ontology highlight
ABSTRACT: ABT-737 is a small molecule Bcl-2 homology (BH)-3 domain mimetic that binds to the Bcl-2 family proteins Bcl-2 and Bcl-xL and is currently under investigation in the clinic. In this study, we investigated potential mechanisms of resistance to ABT-737 in leukemia cell lines. Compared with parental cells, cells that have developed acquired resistance to ABT-737 showed increased expression of Mcl-1 in addition to posttranslational modifications that facilitated both Mcl-1 stabilization and its interaction with the BH3-only protein Bim. To sensitize resistant cells, Mcl-1 was targeted by two pan-Bcl-2 family inhibitors, obatoclax and gossypol. Although gossypol was effective only in resistant cells, obatoclax induced cell death in both parental and ABT-737-resistant cells. NOXA levels were increased substantially by treatment with gossypol and its expression was critical for the gossypol response. Mechanistically, the newly generated NOXA interacted with Mcl-1 and displaced Bim from the Mcl-1/Bim complex, freeing Bim to trigger the mitochondrial apoptotic pathway. Together, our findings indicate that NOXA and Mcl-1 are critical determinants for gossypol-mediated cell death in ABT-737-resistant cells. These data therefore reveal novel insight into mechanisms of acquired resistance to ABT-737.
SUBMITTER: Mazumder S
PROVIDER: S-EPMC3377792 | biostudies-literature | 2012 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA