Unknown

Dataset Information

0

THE TOXIC CYANOBACTERIUM NOSTOC SP. STRAIN 152 PRODUCES HIGHEST AMOUNTS OF MICROCYSTIN AND NOSTOPHYCIN UNDER STRESS CONDITIONS.


ABSTRACT: The understanding of how environmental factors regulate toxic secondary metabolite production in cyanobacteria is important to guarantee water quality. Very little is known on the regulation of toxic secondary metabolite production in benthic cyanobacteria. In this study the physiological regulation of the production of the toxic heptapeptide microcystin (MC) and the non-toxic related peptide nostophycin (NP) in the benthic cyanobacterium Nostoc sp. strain 152 was studied under contrasting environmental conditions. I used a 2(k) levels factorial design, where k is the number of four factors that have been tested: Reduction in temperature (20 vs. 12°C), irradiance (50 vs. 1 ?mol · m(-2) · s(-1)), P-PO(4) (144 vs. 0.14 ?M P-PO(4)), N-NO(3) (5.88 mM vs. N-NO(3) free). While the growth rate was reduced more than hundred fold under most severe conditions of temperature, irradiance, and phosphate reduction the production of MC and NP never ceased. The MC and NP contents per cell varied at maximum 5- and 10.6-fold each, however the physiological variation did not outweigh the highly significant linear relationship between the daily cell division rate and the MC and NP net production rates. Surprisingly the MC and NP contents per cell showed a maximum under P-PO(4) reduced and irradiance reduced conditions. Both intra- and extracellular MC and NP concentrations were negatively related to P-PO(4) and irradiance. It is concluded that the proximate factor behind maximal cellular MC and NP contents is physiological stress.

SUBMITTER: Kurmayer R 

PROVIDER: S-EPMC3378210 | biostudies-literature | 2011 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

THE TOXIC CYANOBACTERIUM NOSTOC SP. STRAIN 152 PRODUCES HIGHEST AMOUNTS OF MICROCYSTIN AND NOSTOPHYCIN UNDER STRESS CONDITIONS.

Kurmayer Rainer R  

Journal of phycology 20110201 1


The understanding of how environmental factors regulate toxic secondary metabolite production in cyanobacteria is important to guarantee water quality. Very little is known on the regulation of toxic secondary metabolite production in benthic cyanobacteria. In this study the physiological regulation of the production of the toxic heptapeptide microcystin (MC) and the non-toxic related peptide nostophycin (NP) in the benthic cyanobacterium Nostoc sp. strain 152 was studied under contrasting envir  ...[more]

Similar Datasets

| S-EPMC3208980 | biostudies-literature
| S-EPMC9307615 | biostudies-literature
| S-EPMC522101 | biostudies-literature
| S-EPMC262317 | biostudies-literature
| S-EPMC2964865 | biostudies-literature
| S-EPMC3766884 | biostudies-literature
| S-EPMC7783341 | biostudies-literature
| S-EPMC6838628 | biostudies-literature
| S-EPMC7118181 | biostudies-literature
| S-EPMC3374012 | biostudies-literature