Genome-wide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing.
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs), non-coding RNAs regulating gene expression, are frequently aberrantly expressed in human cancers. Next-generation deep sequencing technology enables genome-wide expression profiling of known miRNAs and discovery of novel miRNAs at unprecedented quantitative and qualitative accuracy. Deep sequencing was performed on 11 fresh frozen clear cell renal cell carcinoma (ccRCC) and adjacent non-tumoral renal cortex (NRC) pairs, 11 additional frozen ccRCC tissues, and 2 ccRCC cell lines (n?=?35). The 22 ccRCCs patients belonged to 3 prognostic sub-groups, i.e. those without disease recurrence, with recurrence and with metastatic disease at diagnosis. Thirty-two consecutive samples (16 ccRCC/NRC pairs) were used for stem-loop PCR validation. Novel miRNAs were predicted using 2 distinct bioinformatic pipelines. In total, 463 known miRNAs (expression frequency 1-150,000/million) were identified. We found that 100 miRNA were significantly differentially expressed between ccRCC and NRC. Differential expression of 5 miRNAs was confirmed by stem-loop PCR in the 32 ccRCC/NRC samples. With respect to RCC subgroups, 5 miRNAs discriminated between non-recurrent versus recurrent and metastatic disease, whereas 12 uniquely distinguished non-recurrent versus metastatic disease. Blocking overexpressed miR-210 or miR-27a in cell line SKCR-7 by transfecting specific antagomirs did not result in significant changes in proliferation or apoptosis. Twenty-three previously unknown miRNAs were predicted in silico. Quantitative genome-wide miRNA profiling accurately separated ccRCC from (benign) NRC. Individual differentially expressed miRNAs may potentially serve as diagnostic or prognostic markers or future therapeutic targets in ccRCC. The biological relevance of candidate novel miRNAs is unknown at present.
SUBMITTER: Osanto S
PROVIDER: S-EPMC3380046 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA