Unknown

Dataset Information

0

Computational synchronization of microarray data with application to Plasmodium falciparum.


ABSTRACT:

Background

Microarrays are widely used to investigate the blood stage of Plasmodium falciparum infection. Starting with synchronized cells, gene expression levels are continually measured over the 48-hour intra-erythrocytic cycle (IDC). However, the cell population gradually loses synchrony during the experiment. As a result, the microarray measurements are blurred. In this paper, we propose a generalized deconvolution approach to reconstruct the intrinsic expression pattern, and apply it to P. falciparum IDC microarray data.

Methods

We develop a statistical model for the decay of synchrony among cells, and reconstruct the expression pattern through statistical inference. The proposed method can handle microarray measurements with noise and missing data. The original gene expression patterns become more apparent in the reconstructed profiles, making it easier to analyze and interpret the data. We hypothesize that reconstructed gene expression patterns represent better temporally resolved expression profiles that can be probabilistically modeled to match changes in expression level to IDC transitions. In particular, we identify transcriptionally regulated protein kinases putatively involved in regulating the P. falciparum IDC.

Results

By analyzing publicly available microarray data sets for the P. falciparum IDC, protein kinases are ranked in terms of their likelihood to be involved in regulating transitions between the ring, trophozoite and schizont developmental stages of the P. falciparum IDC. In our theoretical framework, a few protein kinases have high probability rankings, and could potentially be involved in regulating these developmental transitions.

Conclusions

This study proposes a new methodology for extracting intrinsic expression patterns from microarray data. By applying this method to P. falciparum microarray data, several protein kinases are predicted to play a significant role in the P. falciparum IDC. Earlier experiments have indeed confirmed that several of these kinases are involved in this process. Overall, these results indicate that further functional analysis of these additional putative protein kinases may reveal new insights into how the P. falciparum IDC is regulated.

SUBMITTER: Zhao W 

PROVIDER: S-EPMC3380736 | biostudies-literature | 2012 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Computational synchronization of microarray data with application to Plasmodium falciparum.

Zhao Wei W   Dauwels Justin J   Niles Jacquin C JC   Cao Jianshu J  

Proteome science 20120621


<h4>Background</h4>Microarrays are widely used to investigate the blood stage of Plasmodium falciparum infection. Starting with synchronized cells, gene expression levels are continually measured over the 48-hour intra-erythrocytic cycle (IDC). However, the cell population gradually loses synchrony during the experiment. As a result, the microarray measurements are blurred. In this paper, we propose a generalized deconvolution approach to reconstruct the intrinsic expression pattern, and apply i  ...[more]

Similar Datasets

| S-EPMC4961827 | biostudies-literature
2020-11-30 | GSE160666 | GEO
| S-EPMC3819685 | biostudies-literature
2021-02-01 | GSE160924 | GEO
2021-02-01 | GSE160923 | GEO
| S-EPMC3585385 | biostudies-literature
2015-01-13 | GSE64887 | GEO
| S-EPMC3218861 | biostudies-literature
| S-EPMC3999921 | biostudies-literature
| S-EPMC8141111 | biostudies-literature