Project description:Burkholderia pseudomallei, the etiologic agent of human melioidosis, is capable of causing severe acute infection with overwhelming septicemia leading to death. A high rate of recurrent disease occurs in adult patients, most often due to recrudescence of the initial infecting strain. Pathogen persistence and evolution during such relapsing infections are not well understood. Bacterial cells present in the primary inoculum and in late infections may differ greatly, as has been observed in chronic disease, or they may be genetically similar. To test these alternative models, we conducted whole-genome comparisons of clonal primary and relapse B. pseudomallei isolates recovered six months to six years apart from four adult Thai patients. We found differences within each of the four pairs, and some, including a 330 Kb deletion, affected substantial portions of the genome. Many of the changes were associated with increased antibiotic resistance. We also found evidence of positive selection for deleterious mutations in a TetR family transcriptional regulator from a set of 107 additional B. pseudomallei strains. As part of the study, we sequenced to base-pair accuracy the genome of B. pseudomallei strain 1026b, the model used for genetic studies of B. pseudomallei pathogenesis and antibiotic resistance. Our findings provide new insights into pathogen evolution during long-term infections and have important implications for the development of intervention strategies to combat recurrent melioidosis.
Project description:BackgroundInfection with the gram-negative bacillus Burkholderia pseudomallei (melioidosis) is an important cause of pneumosepsis in Southeast Asia and has a mortality of up to 40%. We aimed to assess the role of platelets in the host response against B. pseudomallei infection.MethodsAssociation between platelet counts and mortality was determined in 1160 patients with culture-proven melioidosis. Mice treated with (low- or high-dose) platelet-depleting antibody were inoculated intranasally with B. pseudomallei and killed. Additional studies using functional glycoprotein Ibα-deficient mice were conducted.ResultsThrombocytopenia was present in 31% of patients at admission and predicted mortality in melioidosis patients even after adjustment for confounders. In our murine-melioidosis model, platelet counts decreased, and mice treated with a platelet-depleting antibody showed enhanced mortality and higher bacterial loads compared to mice with normal platelet counts. Low platelet counts had a modest impact on early-pulmonary neutrophil influx. Reminiscent of their role in hemostasis, platelet depletion impaired vascular integrity, resulting in early lung bleeding. Glycoprotein Ibα-deficient mice had reduced platelet counts during B. pseudomallei infection together with an impaired local host defense in the lung.ConclusionsThrombocytopenia predicts mortality in melioidosis patients and, during experimental melioidosis, platelets play a protective role in both innate immunity and vascular integrity.
Project description:Septicemic melioidosis is the most severe form of melioidosis, which is caused by Burkholderia pseudomallei. It is endemic in Southeast Asia and is the leading cause of death from community-acquired septicemia in northeast Thailand. A major factor that contributes to the high mortality is the delay in isolation and identification of the causative organism. More than half of the patients die within the first 2 days after hospital admission, before bacterial cultures become positive. The present study was undertaken to develop a rapid diagnostic method for identification of this organism. A nested PCR system that amplified a part of 16S rRNA gene that was highly specific to B. pseudomallei was developed. This system was able to detect as few as two bacteria present in the PCR. DNAs from all 30 clinical isolates of B. pseudomallei and none of the other bacteria tested were amplified. The described PCR system has been employed for the detection of the organism in clinical specimens, including buffy coat and pus from internal organs. The detection of B. pseudomallei in buffy coat specimens by PCR was shown to be comparable to the detection of bacteria from blood cultures in septicemic melioidosis cases.
Project description:Melioidosis is an emerging infectious disease of humans and animals in the tropics caused by the soil bacterium Burkholderia pseudomallei. Despite high fatality rates, the ecology of B.pseudomallei remains unclear. We used a combination of field and laboratory studies to investigate B.pseudomallei colonization of native and exotic grasses in northern Australia. Multivariable and spatial analyses were performed to determine significant predictors for B.pseudomallei occurrence in plants and soil collected longitudinally from field sites. In plant inoculation experiments, the impact of B.pseudomallei upon these grasses was studied and the bacterial load semi-quantified. Fluorescence in situ hybridization and confocal laser scanning microscopy were performed to localize the bacteria in plants. Burkholderia pseudomallei was found to inhabit not only the rhizosphere and roots but also aerial parts of specific grasses. This raises questions about the potential spread of B.pseudomallei by grazing animals whose droppings were found to be positive for these bacteria. In particular, B.pseudomallei readily colonized exotic grasses introduced to Australia for pasture. The ongoing spread of these introduced grasses creates new habitats suitable for B.pseudomallei survival and may be an important factor in the evolving epidemiology of melioidosis seen both in northern Australia and elsewhere globally.
Project description:A melioidosis case cluster of 10 blood culture-positive patients occurred in eastern Sri Lanka after an extreme weather event. Four infections were caused by Burkholderia pseudomallei isolates of sequence type 594. Whole-genome analysis showed that the isolates were genetically diverse and the case cluster was nonclonal.
Project description:Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species.
Project description:Burkholderia pseudomallei, a highly pathogenic bacterium that causes melioidosis, is commonly found in soil in Southeast Asia and Northern Australia1,2. Melioidosis can be difficult to diagnose due to its diverse clinical manifestations and the inadequacy of conventional bacterial identification methods3. The bacterium is intrinsically resistant to a wide range of antimicrobials, and treatment with ineffective antimicrobials may result in case fatality rates (CFRs) exceeding 70%4,5. The importation of infected animals has, in the past, spread melioidosis to non-endemic areas6,7. The global distribution of B. pseudomallei and burden of melioidosis, however, remain poorly understood. Here, we map documented human and animal cases, and the presence of environmental B. pseudomallei, and combine this in a formal modelling framework8-10 to estimate the global burden of melioidosis. We estimate there to be 165,000 (95% credible interval 68,000-412,000) human melioidosis cases per year worldwide, of which 89,000 (36,000-227,000) die. Our estimates suggest that melioidosis is severely underreported in the 45 countries in which it is known to be endemic and that melioidosis is likely endemic in a further 34 countries which have never reported the disease. The large numbers of estimated cases and fatalities emphasise that the disease warrants renewed attention from public health officials and policy makers.
Project description:Melioidosis, caused by Burkholderia pseudomallei, is a potentially lethal infection with no licensed vaccine. There is little understanding of why some exposed individuals have no symptoms, while others rapidly progress to sepsis and death, or why diabetes confers increased susceptibility. We prospectively recruited a cohort of 183 acute melioidosis patients and 21 control subjects from Northeast Thailand and studied immune parameters in the context of survival status and the presence or absence of diabetes. HLA-B*46 (one of the commonest HLA class I alleles in SE Asia) and HLA-C*01 were associated with an increased risk of death (odds ratio 2.8 and 3.1 respectively). Transcriptomic analysis during acute infection in diabetics indicated the importance of interplay between immune pathways including those involved in antigen presentation, chemotaxis, innate and adaptive immunity and their regulation. Survival was associated with enhanced T cell immunity to nine of fifteen immunodominant antigens analysed including AhpC (BPSL2096), BopE (BPSS1525), PilO (BPSS1599), ATP binding protein (BPSS1385) and an uncharacterised protein (BPSL2520). T cell immunity to GroEL (BPSL2697) was specifically impaired in diabetic individuals. This characterization of immunity associated with survival during acute infection offers insights into correlates of protection and a foundation for design of an effective multivalent vaccine.
Project description:Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a potentially life-threatening infectious disease affecting mammals, including humans. Melioidosis symptoms are both protean and diverse, ranging from mild, localized skin infections to more severe and often fatal presentations including pneumonia, septic shock with multiple internal abscesses and occasionally neurological involvement. Several ubiquitous virulence determinants in B. pseudomallei have already been discovered. However, the molecular basis for differential pathogenesis has, until now, remained elusive. Using clinical data from 556 Australian melioidosis cases spanning more than 20 years, we identified a Burkholderia mallei-like actin polymerization bimA(Bm) gene that is strongly associated with neurological disease. We also report that a filamentous hemagglutinin gene, fhaB3, is associated with positive blood cultures but is negatively correlated with localized skin lesions without sepsis. We show, for the first time, that variably present virulence factors play an important role in the pathogenesis of melioidosis. Collectively, our study provides a framework for assessing other non-ubiquitous bacterial virulence factors and their association with disease, such as candidate loci identified from large-scale microbial genome-wide association studies.
Project description:The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease.