Project description:Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.
Project description:Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor (LDLR) protein levels and function. Loss of PCSK9 increases LDLR levels in liver and reduces plasma LDL cholesterol (LDLc), whereas excess PCSK9 activity decreases liver LDLR levels and increases plasma LDLc. Here, we have developed active, cross-species, small interfering RNAs (siRNAs) capable of targeting murine, rat, nonhuman primate (NHP), and human PCSK9. For in vivo studies, PCSK9 and control siRNAs were formulated in a lipidoid nanoparticle (LNP). Liver-specific siRNA silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50-70%. The reduction in PCSK9 transcript was associated with up to a 60% reduction in plasma cholesterol concentrations. These effects were shown to be mediated by an RNAi mechanism, using 5'-RACE. In transgenic mice expressing human PCSK9, siRNAs silenced the human PCSK9 transcript by >70% and significantly reduced PCSK9 plasma protein levels. In NHP, a single dose of siRNA targeting PCSK9 resulted in a rapid, durable, and reversible lowering of plasma PCSK9, apolipoprotein B, and LDLc, without measurable effects on either HDL cholesterol (HDLc) or triglycerides (TGs). The effects of PCSK9 silencing lasted for 3 weeks after a single bolus i.v. administration. These results validate PCSK9 targeting with RNAi therapeutics as an approach to specifically lower LDLc, paving the way for the development of PCSK9-lowering agents as a future strategy for treatment of hypercholesterolemia.
Project description:In the past decade, microRNAs (miRNAs) have emerged as key regulators of circulating levels of lipoproteins. Specifically, recent work has uncovered the role of miRNAs in controlling the levels of atherogenic low-density lipoprotein LDL (LDL)-cholesterol by post-transcriptionally regulating genes involved in very low-density lipoprotein (VLDL) secretion, cholesterol biosynthesis, and hepatic LDL receptor (LDLR) expression. Interestingly, several of these miRNAs are located in genomic loci associated with abnormal levels of circulating lipids in humans. These findings reinforce the interest of targeting this subset of non-coding RNAs as potential therapeutic avenues for regulating plasma cholesterol and triglyceride (TAG) levels. In this review, we will discuss how these new miRNAs represent potential pre-disposition factors for cardiovascular disease (CVD), and putative therapeutic targets in patients with cardiometabolic disorders. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Project description:Although statin therapy is a cornerstone of current low density lipoprotein (LDL)-lowering strategies, there is a need for additional therapies to incrementally lower plasma LDL cholesterol. In this study, we investigated the effect of several methylenedioxyphenol derivatives in regulating LDL cholesterol through induction of LDL receptor (LDLR). INV-403, a modified methylenedioxyphenol derivative, increased LDLR mRNA and protein expression in HepG2 cells in a dose- and time-dependent fashion. These effects were apparent even under conditions of HMG-CoA reductase inhibition. Electrophoresis migration shift assays demonstrated that INV-403 activates SREBP2 but not SREBP1c, with immunoblot analysis showing an increased expression of the mature form of SREBP2. Knockdown of SREBP2 reduced the effect of INV-403 on LDLR expression. The activation of SREBP2 by INV-403 is partly mediated by Akt/GSK3β pathways through inhibition of phosphorylation-dependent degradation by ubiquitin-proteosome pathway. Treatment of C57Bl/6j mice with INV-403 for two weeks increased hepatic SREBP2 levels (mature form) and upregulated LDLR with concomitant lowering of plasma LDL levels. Transient expression of a LDLR promoter-reporter construct, a SRE-mutant LDLR promoter construct, and a SRE-only construct in HepG2 cells revealed an effect predominantly through a SRE-dependent mechanism. INV-403 lowered plasma LDL cholesterol levels through LDLR upregulation. These results indicate a role for small molecule approaches other than statins for lowering LDL cholesterol.
Project description:Objectives:To measure correlation and concordance between measured LDL cholesterol (mLDLc) and Friedewald's calculated LDL cholesterol (cLDLc). To compare the mLDLc and cLDLc values for various anthropometric measures and biochemical indices including insulin resistance, nephropathy, glycated hemoglobin and triglycerides. Methods:Two hundred thirty two subjects were included in this cross-sectional analysis from Jan-2016 to July-2017 from a target population visiting PNS HAFEEZ hospital. Mean age of the subjects was 46.56(±11.95) years (n=232). These subjects underwent clinical evaluation including measurement of anthropometric measurements, biochemical testing for fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), lipid profile, urine albumin creatinine ratio (UACR), and insulin. Correlation and concordance between mLDLc and Friedewald's cLDLc were measured. Finally, Comparison of risk evaluation for mLDLc and cLDLc between groups formulated based upon UACR (Based upon a cut off of 2.5 mg/g) and fasting triglycerides (Group-1 :< 1.0 mmol/L, Group-2: 1.0-1.99 mmol/L and Group-3 :> 1.99 mmol/) was carried out. Results:There was significant positive linear correlation between mLDLc and cLDLc [r=0.468, <0.001]. Kendall's Coefficient of concordance between mLDLc and cLDLc was 0.055 (p<0.001). Differences evaluated by one way ANOVA analysis for mLDLc between various triglycerides groups were only significant between group-1 and group-2 [{Group-1:Mean=2.40, (2.19-2.61), n=43}, {Group-2:Mean=2.81, (2.69-2.92), n=136}, [{Group-3:Mean=2.59,(2.37-2.81), n=53}],(p=0.004) in comparison to cLDLc [{Group-1:Mean=2.63, (2.43-2.84), n=43}, {Group-2:Mean=2.85, (2.76-2.93), n=136}, [{Group-3:Mean=2.75, (2.60-2.90), n=53}]. Calculated method for LDLc showed higher UACR than mLDLc. (p=0.021). Conclusion:cLDLc over estimates LDL-cholesterol in comparison to mLDLc. The correlation between cLDLc and mLDLc was only moderate. However, cLDLc provided better degree of risk prediction for nephropathy and glycated hemoglobin than mLDLc.
Project description:Cryptosporidium spp. are responsible for devastating diarrhoea in immunodeficient individuals. In the intestinal tract, the developmental stages of the parasite are confined to the apical surfaces of epithelial cells. Upon invasion, Cryptosporidium incorporates the microvillous membrane of the enterocyte to form the parasitophorous vacuole (PV) and sequesters itself from the host cytoplasm by rearranging the host cytoskeleton. Cryptosporidium parvum has minimal anabolic capabilities and relies on transporters and salvage pathways to meet its basic metabolic requirements. The cholesterol salvage pathway is crucial for the development of protozoan parasites. In this study, we have examined the sources of cholesterol from C.?parvum infecting enterocytes. We illustrated that the intracellular stages of Cryptosporidium as well as the oocysts shed by the host, contain cholesterol. Incubation of infected enterocytes in lipoprotein-free medium impairs parasite development and results in substantial decrease in cholesterol content associated with the PV. Among lipoproteins, LDL constitutes an important source of cholesterol for Cryptosporidium. Dietary cholesterol incorporated into micelles is internalized into enterocytes by the NPC1L1 transporter. We showed that C.?parvum also obtains cholesterol from micelles in enterocytes.Pharmacological blockade of NPC1L1 function by ezetimibe or moderate downregulation of NPC1L1 expression decreases parasite infectivity. These observations indicate that, despite its dual sequestration from the intestinal lumen and the host cytoplasm, C.?parvum can, in fact, obtain cholesterol both from the gut's lumen and the host cell. This study highlights the evolutionary advantages for epicellular pathogens to access to nutrients from the outside and inside of the host cell.
Project description:BackgroundElevated triglyceride-rich lipoprotein (TRL) and small-dense low-density lipoprotein (sdLDL) particles are hallmarks of atherogenic dyslipidemia, and their cholesterol content is hypothesized to drive atherosclerotic risk. Prospective epidemiological data pertaining to cholesterol content of TRLs and sdLDL in primary prevention populations are mostly limited to coronary heart disease.ObjectivesThe purpose of this study was to prospectively evaluate whether triglyceride-rich lipoprotein cholesterol (TRL-C) and small-dense low-density lipoprotein cholesterol (sdLDL-C) concentrations associate with composite and individual incident cardiovascular disease (CVD) outcomes including myocardial infarction (MI), ischemic stroke (IS), and peripheral artery disease (PAD).MethodsIn a prospective case-cohort study within the Women's Health Study, TRL-C and sdLDL-C (mg/dl) were directly measured in baseline blood specimens of case subjects (n = 480) and the reference subcohort (n = 496). Risk associations were evaluated for total CVD (MI, IS, PAD, and CVD death), coronary and cerebrovascular disease (MI, IS, CVD death), and individual outcomes (MI, IS, and PAD). Models were adjusted for traditional risk factors, low-density lipoprotein cholesterol, and high-sensitivity C-reactive protein.ResultsThe risk of both composite outcomes significantly increased across quartiles of TRL-C and sdLDL-C. TRL-C was significantly associated with MI and PAD (MI hazard ratio [HR]Q4: 3.05 [95% confidence interval (CI): 1.46 to 6.39]; ptrend = 0.002; PAD HRQ4: 2.58 [95% CI: 1.18 to 5.63]; ptrend = 0.019), whereas sdLDL-C was significantly associated with MI alone (HRQ4: 3.71 [95% CI: 1.59 to 8.63]; ptrend < 0.001). Both markers weakly associated with IS. Association patterns were similar for continuous exposures and, for TRL-C, among subjects with low atherogenic particle concentrations (apolipoprotein B <100 mg/dl).ConclusionsTRL-C strongly associates with future MI and PAD events, whereas sdLDL-C strongly associates with MI alone. These findings signal that the cholesterol content of TRLs and sdLDL influence atherogenesis independently of low-density lipoprotein cholesterol, and high sensitivity C-reactive protein, with potentially different potency across vascular beds. (Women's Health Study; NCT00000479).
Project description:Despite progress with triplex-forming oligonucleotides or helix-invading peptide nucleic acids (PNAs), there remains a need for probes facilitating sequence-unrestricted targeting of double stranded DNA (dsDNA) at physiologically relevant conditions. Invader LNA probes, i.e., DNA duplexes with "+1 interstrand zipper arrangements" of intercalator-functionalized 2'-amino-alpha-l-LNA monomers, are demonstrated herein to recognize short mixed sequence dsDNA targets. This approach, like pseudo-complementary PNA (pcPNA), relies on relative differences in stability between probe duplexes and the corresponding probe:target duplexes for generation of a favourable thermodynamic gradient. Unlike pcPNA, Invader LNA probes take advantage of the "nearest neighbour exclusion principle", i.e., intercalating units of Invader LNA monomers are poorly accommodated in probe duplexes but extraordinarily well tolerated in probe-target duplexes (DeltaT(m)/modification up to +11.5 degrees C). Recognition of isosequential dsDNA-targets occurs: a) at experimental temperatures much lower than the thermal denaturation temperatures (T(m)'s) of Invader LNAs or dsDNA-targets, b) at a wide range of ionic strengths, and c) with good mismatch discrimination. Recognition of dsDNA is monitored in real-time using inherent pyrene-pyrene excimer signals of Invader LNA probes, which provides insights into reaction kinetics and enables rational design of probes. These properties render Invader LNAs as promising probes for biomedical applications entailing sequence-unrestricted recognition of dsDNA.
Project description:LDL cholesterol has a causal role in the development of cardiovascular disease. Improved understanding of the biological mechanisms that underlie the metabolism and regulation of LDL cholesterol might help to identify novel therapeutic targets. We therefore did a genome-wide association study of LDL-cholesterol concentrations.We used genome-wide association data from up to 11,685 participants with measures of circulating LDL-cholesterol concentrations across five studies, including data for 293 461 autosomal single nucleotide polymorphisms (SNPs) with a minor allele frequency of 5% or more that passed our quality control criteria. We also used data from a second genome-wide array in up to 4337 participants from three of these five studies, with data for 290,140 SNPs. We did replication studies in two independent populations consisting of up to 4979 participants. Statistical approaches, including meta-analysis and linkage disequilibrium plots, were used to refine association signals; we analysed pooled data from all seven populations to determine the effect of each SNP on variations in circulating LDL-cholesterol concentrations.In our initial scan, we found two SNPs (rs599839 [p=1.7x10(-15)] and rs4970834 [p=3.0x10(-11)]) that showed genome-wide statistical association with LDL cholesterol at chromosomal locus 1p13.3. The second genome screen found a third statistically associated SNP at the same locus (rs646776 [p=4.3x10(-9)]). Meta-analysis of data from all studies showed an association of SNPs rs599839 (combined p=1.2x10(-33)) and rs646776 (p=4.8x10(-20)) with LDL-cholesterol concentrations. SNPs rs599839 and rs646776 both explained around 1% of the variation in circulating LDL-cholesterol concentrations and were associated with about 15% of an SD change in LDL cholesterol per allele, assuming an SD of 1 mmol/L.We found evidence for a novel locus for LDL cholesterol on chromosome 1p13.3. These results potentially provide insight into the biological mechanisms that underlie the regulation of LDL cholesterol and might help in the discovery of novel therapeutic targets for cardiovascular disease.