Unknown

Dataset Information

0

Myeloid heme oxygenase-1 haploinsufficiency reduces high fat diet-induced insulin resistance by affecting adipose macrophage infiltration in mice.


ABSTRACT: Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1(+/-) bone marrow were fed with HFD for over 24 weeks, the HO-1(+/-) chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1(+/-) macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1(+/-) macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity.

SUBMITTER: Huang JY 

PROVIDER: S-EPMC3382977 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4376439 | biostudies-literature
| S-EPMC3973235 | biostudies-literature
| S-EPMC3613902 | biostudies-other
| S-EPMC3681543 | biostudies-literature
| S-EPMC4227200 | biostudies-literature
| S-EPMC4171064 | biostudies-literature
| S-EPMC2519760 | biostudies-literature
| S-EPMC4238008 | biostudies-other
| S-EPMC3198061 | biostudies-literature
| S-EPMC5428056 | biostudies-literature