Ontology highlight
ABSTRACT:
SUBMITTER: Stevens KN
PROVIDER: S-EPMC3384385 | biostudies-literature | 2012 Jul
REPOSITORIES: biostudies-literature
Stevens Kristen N KN Lindstrom Sara S Scott Christopher G CG Thompson Deborah D Sellers Thomas A TA Wang Xianshu X Wang Alice A Atkinson Elizabeth E Rider David N DN Eckel-Passow Jeanette E JE Varghese Jajini S JS Audley Tina T Brown Judith J Leyland Jean J Luben Robert N RN Warren Ruth M L RM Loos Ruth J F RJ Wareham Nicholas J NJ Li Jingmei J Hall Per P Liu Jianjun J Eriksson Louise L Czene Kamila K Olson Janet E JE Pankratz V Shane VS Fredericksen Zachary Z Diasio Robert B RB Lee Adam M AM Heit John A JA DeAndrade Mariza M Goode Ellen L EL Vierkant Robert A RA Cunningham Julie M JM Armasu Sebastian M SM Weinshilboum Richard R Fridley Brooke L BL Batzler Anthony A Ingle James N JN Boyd Norman F NF Paterson Andrew D AD Rommens Johanna J Martin Lisa J LJ Hopper John L JL Southey Melissa C MC Stone Jennifer J Apicella Carmel C Kraft Peter P Hankinson Susan E SE Hazra Aditi A Hunter David J DJ Easton Douglas F DF Couch Fergus J FJ Tamimi Rulla M RM Vachon Celine M CM
Human molecular genetics 20120424 14
Percent mammographic density adjusted for age and body mass index (BMI) is one of the strongest risk factors for breast cancer and has a heritable component that remains largely unidentified. We performed a three-stage genome-wide association study (GWAS) of percent mammographic density to identify novel genetic loci associated with this trait. In stage 1, we combined three GWASs of percent density comprised of 1241 women from studies at the Mayo Clinic and identified the top 48 loci (99 single ...[more]