Ontology highlight
ABSTRACT: Background and aims
The root apical meristem (RAM) is the plant stem cell niche which provides for the formation and continuous development of the root. Auxin is the main regulator of RAM functioning, and auxin maxima coincide with the sites of RAM initiation and maintenance. Auxin gradients are formed due to local auxin biosynthesis and polar auxin transport. The PIN family of auxin transporters plays a critical role in polar auxin transport, and two mechanisms of auxin maximum formation in the RAM based on PIN-mediated auxin transport have been proposed to date: the reverse fountain and the reflected flow mechanisms.Methods
The two mechanisms are combined here in in silico studies of auxin distribution in intact roots and roots cut into two pieces in the proximal meristem region. In parallel, corresponding experiments were performed in vivo using DR5::GFP Arabidopsis plants.Key results
The reverse fountain and the reflected flow mechanism naturally cooperate for RAM patterning and maintenance in intact root. Regeneration of the RAM in decapitated roots is provided by the reflected flow mechanism. In the excised root tips local auxin biosynthesis either alone or in cooperation with the reverse fountain enables RAM maintenance.Conclusions
The efficiency of a dual-mechanism model in guiding biological experiments on RAM regeneration and maintenance is demonstrated. The model also allows estimation of the concentrations of auxin and PINs in root cells during development and under various treatments. The dual-mechanism model proposed here can be a powerful tool for the study of several different aspects of auxin function in root.
SUBMITTER: Mironova VV
PROVIDER: S-EPMC3394645 | biostudies-literature | 2012 Jul
REPOSITORIES: biostudies-literature
Annals of botany 20120416 2
<h4>Background and aims</h4>The root apical meristem (RAM) is the plant stem cell niche which provides for the formation and continuous development of the root. Auxin is the main regulator of RAM functioning, and auxin maxima coincide with the sites of RAM initiation and maintenance. Auxin gradients are formed due to local auxin biosynthesis and polar auxin transport. The PIN family of auxin transporters plays a critical role in polar auxin transport, and two mechanisms of auxin maximum formatio ...[more]