Project description:The Bruton tyrosine kinase inhibitor (BTKi) ibrutinib is a new targeted therapy for patients with chronic lymphocytic leukemia (CLL). Ibrutinib is given orally on a continuous schedule and induces durable remissions in the majority of CLL patients. However, a small proportion of patients initially responds to the BTKi and then develops resistance. Estimating the frequency, timing, and individual risk of developing resistance to ibrutinib, therefore, would be valuable for long-term management of patients. Computational evolutionary models, based on measured kinetic parameters of patients, allow us to approach these questions and to develop a roadmap for personalized prognosis and treatment management. Our kinetic models predict that BTKi-resistant mutants exist before initiation of ibrutinib therapy, although they only comprise a minority of the overall tumor burden. Furthermore, we can estimate the time required for resistant cells to grow to detectable levels. We predict that this can be highly variable, depending mostly on growth and death rates of the individual CLL cell clone. For a specific patient, this time can be predicted with a high degree of certainty. Our model can thus be used to predict for how long ibrutinib can suppress the disease in individual patients. Furthermore, the model can suggest whether prior debulking of the tumor with chemo-immunotherapy can prolong progression-free survival under ibrutinib. Finally, by applying the models to data that document progression during ibrutinib therapy, we estimated that resistant mutants might have a small (<2%) mean fitness advantage in the absence of treatment, compared with sensitive cells.
Project description:Chronic lymphocytic leukemia (CLL) is associated with physical dysfunction and low overall fitness that predicts poor survival following the commencement of treatment. However, it remains unknown whether higher fitness provides antioncogenic effects. We identified ten fit (CLL-FIT) and ten less fit (CLL-UNFIT) treatment-naïve CLL patients from 144 patients who completed a set of physical fitness and performance tests. Patient plasma was used to determine its effects on an in vitro 5-day growth/viability of three B-cell cell lines (OSU-CLL, Daudi, and Farage). Plasma exosomal miRNA profiles, circulating lipids, lipoproteins, inflammation levels, and immune cell phenotypes were also assessed. CLL-FIT was associated with fewer viable OSU-CLL cells at Day 1 (p = 0.003), Day 4 (p = 0.001), and Day 5 (p = 0.009). No differences between the groups were observed for Daudi and Farage cells. Of 455 distinct exosomal miRNAs identified, 32 miRNAs were significantly different between the groups. Of these, 14 miRNAs had ≤-1 or ≥1 log2 fold differences. CLL-FIT patients had five exosomal miRNAs with lower expression and nine miRNAs with higher expression. CLL-FIT patients had higher HDL cholesterol, lower inflammation, and lower levels of triglyceride components (all p < 0.05). CLL-FIT patients had lower frequencies of low-differentiated NKG2+/CD158a/bneg (p = 0.015 and p = 0.014) and higher frequencies of NKG2Aneg/CD158b+ mature NK cells (p = 0.047). The absolute number of lymphocytes, including CD19+/CD5+ CLL-cells, was similar between the groups (p = 0.359). Higher physical fitness in CLL patients is associated with altered CLL-like cell line growth in vitro and with altered circulating and cellular factors indicative of better immune functions and tumor control.
Project description:Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. It has a strong genetic basis, showing a ~ 8-fold increased risk of CLL in first-degree relatives. Genome-wide association studies (GWAS) have identified 41 risk variants across 41 loci. However, for a majority of the loci, the functional variants and the mechanisms underlying their causal roles remain undefined. Here, we examined the genetic and epigenetic features associated with 12 index variants, along with any correlated (r2 ≥ 0.5) variants, at the CLL risk loci located outside of gene promoters. Based on publicly available ChIP-seq and chromatin accessibility data as well as our own ChIP-seq data from CLL patients, we identified six candidate functional variants at six loci and at least two candidate functional variants at each of the remaining six loci. The functional variants are predominantly located within enhancers or super-enhancers, including bi-directionally transcribed enhancers, which are often restricted to immune cell types. Furthermore, we found that, at 78% of the functional variants, the alternative alleles altered the transcription factor binding motifs or histone modifications, indicating the involvement of these variants in the change of local chromatin state. Finally, the enhancers carrying functional variants physically interacted with genes enriched in the type I interferon signaling pathway, apoptosis, or TP53 network that are known to play key roles in CLL. These results support the regulatory roles for inherited noncoding variants in the pathogenesis of CLL.
Project description:B cells provide immunity to extracellular pathogens by secreting a diverse repertoire of antibodies with high affinity and specificity for exposed antigens. The B cell receptor (BCR) is a transmembrane antibody, which facilitates the clonal selection of B cells producing secreted antibodies of the same specificity. The diverse antibody repertoire is generated by V(D)J recombination of heavy and light chain genes, whereas affinity maturation is mediated by activation-induced cytidine deaminase (AID)-mediated mutagenesis. These processes, which are essential for the generation of adaptive humoral immunity, also render B cells susceptible to chromosomal rearrangements and point mutations that in some cases lead to cancer. In this chapter, we will review the central role of PI3K s in mediating signals from the B cell receptor that not only facilitate the development of functional B cell repertoire, but also support the growth and survival of neoplastic B cells, focusing on chronic lymphocytic leukemia (CLL) B cells. Perhaps because of the central role played by PI3K in BCR signaling, B cell leukemia and lymphomas are the first diseases for which a PI3K inhibitor has been approved for clinical use.
Project description:Bruton's tyrosine kinase (BTK) plays a key role in the B-cell receptor (BCR) signaling pathway and confers anti-apoptotic and proliferative properties to malignant B-cells in chronic lymphocytic leukemia (CLL). Small molecule BTK inhibitors were designed to bind BTK's active site and block downstream signaling. These drugs have now been used in the treatment of thousands of patients with CLL, the most common form of leukemia in the western hemisphere. However, adverse effects of early generations of BTK inhibitors and resistance to treatment have led to the development of newer, more selective and non-covalent BTK inhibitors. As the use of these newer generation BTK inhibitors has increased, novel BTK resistance mutations have come to light. This review aims to discuss previously known and novel BTK mutations, their mechanisms of resistance, and their relationship with patient treatment. Also discussed here are future studies that are needed to investigate the underlying cause allowing these mutations to occur and how they incite resistance. New treatments on the horizon that attempt to maneuver around these resistance mutations can be met with new resistance mutations, creating an unmet need for patients with CLL. Novel therapies and combinations that address all forms of resistance are discussed.
Project description:Many functional consequences of mutations on tumor phenotypes in chronic lymphocytic leukemia (CLL) are only partially known. This is in part due to a scarcity of information on the proteome of CLL. We profiled the proteome of 117 CLL samples with data-independent acquisition mass spectrometry (DIA-MS) and integrated the results with genomic, transcriptomic, functional data and clinical outcome. We found trisomy 12 and IGHV to be major determinants of proteome variation in CLL (1055 and 542 differential proteins FDR of 5%). Trisomy 12 was associated with limited protein abundance buffering. Protein complex analyses detected functional units involved in BCR/PI3K/AKT signaling in CLL with trisomy 12. We associated protein expression with response to anticancer drugs, and STAT2 protein expression emerged as a biomarker for the prediction of response to kinase inhibitors including BTK and MEK inhibitors. STAT2 protein levels were determined by gene dosage (trisomy 12), stabilization in a protein complex and linked to interferon signaling in CLL. This study highlights the emerging importance of protein abundance profiling in CLL biology.
Project description:Recent success of novel therapies has improved treatment of chronic lymphocytic leukemia (CLL) patients, but most of them still require several treatment regimes. To improve treatment choice, prognostic markers suitable for prediction of disease outcome are required. Several molecular/genetic markers have been established, but accessibility for the entirety of all patients is limited. We here evaluated the relevance of GITR/4-1BB as well as their ligands for the prognosis of CLL patients. Surface expression of GITR/GITRL and 4-1BB/4-1BBL was correlated with established prognostic markers. Next, we separated our patient population according to GITR/GITRL and 4-1BB/4-1BBL expression in groups with high/low expression levels and performed Kaplan-Meier analyses. Interestingly, no correlation was observed with the defined prognostic markers. Whereas no significant difference between high and low expression of GITR, GITRL and 4-1BBL was observed, high 4-1BB levels on leukemic cells were associated with significantly shorter survival. Thereby we identify 4-1BB as prognostic marker for CLL.
Project description:We compared gene expression profiles of CLL patients with and without MYD88 L265P mutations, taking into consideration IGHV mutation status.
Project description:In this experiment we in vitro activated CLL cells on a layer of fibroblasts expressing CD40L (3T40) or nothing (3T3) for 48 hours. After the 48 hours, cells were taken off the fibroblasts and sorted for viable CD19+ cells. Then we performed RNA sequencing.