Structural dynamics of the ?E22 (Osaka) familial Alzheimer's disease-linked amyloid ?-protein.
Ontology highlight
ABSTRACT: A familial form of Alzheimer disease recently was described in a kindred in Osaka, Japan. This kindred possesses an amyloid ?-protein (A?) precursor mutation within the A? coding region that results in the deletion of Glu22 (?E22). We report here results of studies of [?E22]A?40 and [?E22]A?42 that sought to elucidate the conformational dynamics, oligomerization behavior, fibril formation kinetics, fibril morphology, and fibril stability of these mutant peptides. Both [?E22]A? peptides had extraordinary ?-sheet formation propensities. The [?E22]A?40 mutant formed ?-sheet secondary structure elements ?400-fold faster. Studies of ?-sheet stability in the presence of fluorinated alcohol cosolvents or high pH revealed that the ?E22 mutation substantially increased stability, producing a rank order of [?E22]A?42 >>A?42 > [?E22]A?40 > A?40. The mutation facilitated formation of oligomers by [?E22]A?42 (dodecamers and octadecamers) that were not observed with A?42. Both A?40 and A?42 peptides formed nebulous globular and small string-like structures immediately upon solvation from lyophilizates, whereas short protofibrillar and fibrillar structures were evident immediately in the ?E22 samples. Determination of the critical concentration for fibril formation for the [?E22]A? peptides showed it to be ?1/2 that of the wild type homologues, demonstrating that the mutations causes a modest increase in fibril stability. The magnitude of this increase, when considered in the context of the extraordinary increase in ?-sheet propensity for the ?E22 peptides, suggests that the primary biophysical effect of the mutation is to accelerate conformational changes in the peptide monomer that facilitate oligomerization and higher-order assembly.
SUBMITTER: Inayathullah M
PROVIDER: S-EPMC3396427 | biostudies-literature | 2011 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA